Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (1): 107-113.doi: 10.13229/j.cnki.jdxbgxb20181242

Previous Articles    

Object detection based on Euclidean clustering algorithm with 3D laser scanner

Chang-fu ZONG(),Long WEN,Lei HE()   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2018-12-19 Online:2020-01-01 Published:2020-02-06
  • Contact: Lei HE E-mail:zong.changfu@ascl.jlu.edu.cn;jlu_helei@126.com

Abstract:

Automatic driving vehicles need lidar to detect the object while driving. Because of the moving of vehicles, the point cloud becomes inaccurate while the traditional Euclidean clustering algorithm can not detect the obstacles in both near and remote areas at the same time, which leads to an inaccurate result of the number of those obstacles. In order to solve this problem, a algorithm is proposed to correct the 3D lidar point cloud, which is inaccurate, meanwhile, improve the Euclidean cluster algorithm, so it be able to change the distance limit according to the distance between the obstacle and lidar. Experimental results illustrate that the proposed algorithm can detect the obstacle in both near and remote areas, and the detect distance is increased compared with the traditional method.

Key words: engineering of communication and transportation system, automatic driving, Euclidean cluster, object detection, lidar

CLC Number: 

  • U41

Fig.1

Steering angle and coordinate system"

Fig.2

Translation of coordinate system"

Fig.3

Correction of point cloud"

Fig.4

Three?dimensional KD?tree"

Fig. 5

Experimental vehicle"

Fig.6

Obstacle to be detected"

Fig.7

Correction while driving straight"

Fig.8

Correction while turning"

Fig.9

Comparison of two cluster algorithm"

1 冯少荣, 肖文俊. DBSCAN聚类算法的研究与改进[J].中国矿业大学学报, 2008, 37(1): 105-111.
Feng Shao-rong, Xiao Wen-jun. An improved DBSCAN clustering algorithm[J]. Journal of China University of Mining and Technology, 2008, 37(1): 105-111.
2 孔栋, 王晓原. 基于车载32线激光雷达点云的车辆目标识别算法[J]. 科学技术与工程, 2018, 18(5): 81-85.
Kong Dong, Wang Xiao-yuan. Vehicle target identification algorithm based on poin cloud of vehicle 32-line laser lidar[J]. Science Technology and Engineering, 2018, 18(5): 81-85.
3 陈向阳, 杨洋. 欧氏聚类算法支持下的点云数据分割[J]. 测绘通报, 2017, (11): 27-31, 36.
Chen Xiang-yang, Yang Yang. Measurement of point cloud data segmentation based on Euclidean clustering algorithm[J]. Bulletin of Surveying and Mapping, 2017, (11): 27-31, 36.
4 王新竹, 李骏, 李红建, 等. 基于三维激光雷达和深度图像的自动驾驶汽车障碍物检测方法[J]. 吉林大学学报:工学版, 2016, 46(2): 360-365.
Wang Xin-zhu, Li Jun, Li Hong-jian, et al. Obstacle detection based on 3D laser scanner and range image for intelligent vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(2): 360-365.
5 周水庚, 周傲英, 曹晶, 等. 基于数据分区的DBSCAN算法[J]. 计算机研究与发展, 2000, 37(10): 1153-1159.
Zhou Shui-geng, Zhou Ao-ying, Cao Jing, et al. A data-partitioning-based DBSCAN algorithm[J]. Journal of Computer Research and Development, 2000, 37(10): 1153-1159.
6 林辉. 基于车载多激光雷达的地图构建与障碍物检测[D]. 浙江:浙江大学信息与电子工程学院, 2017.
Lin Hui. The lidar based obstacle detecion and map building[D]. Hanzhou: College of Information Science and Electronic Engineering, Zhejiang University, 2017.
7 Lehtomaki M, Jaakkola A, Hyyppa J, et al. Object classification and recognition from mobile laser scanning point clouds in a road environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1226-1239.
8 薛连杰, 齐臣坤, 张彪, 等. 基于3维点云欧氏聚类和RANSAC边界拟合的目标物体尺寸和方位识别[J]. 机械设计与研究, 2018, 34(5): 44-48, 53.
Xue Lian-jie, Qi Chen-kun, Zhang Biao, et al. Object size and orientation recognition based on 3D point cloud euclidean clustering and RANSAC boundary fitting[J]. Machine Design and Research, 2018, 34(5): 44-48, 53.
9 刘如松. 基于样本间最小欧氏距离的多特征融合识别算法研究[J]. 计算机与数字工程, 2017, 45(12): 2373-2378.
Liu Ru-song. Research on multi-feature fusion recognition algorithm based on minimum Euclidean distance between samples[J]. Computer and Digital Engineering, 2017, 45(12): 2373-2378.
10 王育坚, 廉腾飞,吴明明, 等. 基于八叉树与KD树索引的点云配准方法[J]. 测绘工程, 2017, 26(8): 35-40.
Wang Yu-jian, Lian Teng-fei, Wu Ming-ming, et al. Point cloud registration based on octree and KD-tree index[J]. Engineering of Surveying and Mapping, 2017, 26(8): 35-40.
11 陈贵宾, 高振海, 何磊. 车载三维激光雷达外参数的分步自动标定算法[J]. 中国激光, 2017, 44(10): 1010004
Chen Gui-bin, Gao Zhen-hai, He Lei. Step-by-step automatic calibation algorithm for exterior parameters of 3D lidar mounted on vehicle[J]. Chinese Journal of Lasers, 2017, 44(10): 1010004.
[1] Xiang-jiu CHE,Hua-luo LIU,Qing-bin SHAO. Fabric defect recognition algorithm based onimproved Fast RCNN [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2038-2044.
[2] Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667.
[3] Zhen-hai GAO,Tian-jun SUN,Lei HE. Causal reasoning decision⁃making for vehicle longitudinal automatic driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1392-1404.
[4] Liang JIANG,Yi HE. Risky driving behavior and influencing factors analysis for electric two⁃wheeler [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1107-1113.
[5] Xiao⁃qin LUO,Dian⁃hai WANG,Sheng JIN. Traffic signal actuated control at isolated intersections for heterogeneous traffic [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 695-704.
[6] Zhi⁃hui LI,Tao ZHONG,Yong⁃hua ZHAO,Yong⁃li HU,Hai⁃tao LI,Jing⁃wei ZHAO. Pedestrian tracking algorithm for autonomous driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 680-687.
[7] QU Da-yi,YANG Jing-ru,BING Qi-chun,WANG Wu-lin,ZHOU Jing-chun. Arterial traffic offset optimization based on queue characteristics at adjacent intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1685-1693.
[8] LI Zhi-hui, HU Yong-li, ZHAO Yong-hua, MA Jia-lei, LI Hai-tao, ZHONG Tao, YANG Shao-hui. Locating moving pedestrian from running vehicle [J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[9] YANG Chao-yu, LI Ce, LIANG Yin-cheng, YANG Feng. Blurred object detection based on improved particle filter in coal mine underground surveilance [J]. 吉林大学学报(工学版), 2017, 47(6): 1976-1985.
[10] SUN Zong-yuan, FANG Shou-en. Hierarchical clustering algorithm of moving vehicle trajectories in entrances and exits freeway [J]. 吉林大学学报(工学版), 2017, 47(6): 1696-1702.
[11] ZHANG Zhe, JIA Li-min, QIN Yong, YUN Ting. Equalization-based feedback control model of pedestrian counter flow [J]. 吉林大学学报(工学版), 2017, 47(6): 1728-1737.
[12] SHAO Sai, BI Jun, GUAN Wei. Electric vehicle routing problem with charging and dynamic customer demands [J]. 吉林大学学报(工学版), 2017, 47(6): 1688-1695.
[13] LI Ye, WANG Wei, XING Lu, WANG Hao, DONG Chang-yin. Improving traffic efficiency of highway by integration of adaptive cruise control and variable speed limit control [J]. 吉林大学学报(工学版), 2017, 47(5): 1420-1425.
[14] LI Xian-sheng, MENG Fan-song, ZHENG Xuan-lian, REN Yuan-yuan, YAN Jia-hui. Driver's visual characteristics based on stress response [J]. 吉林大学学报(工学版), 2017, 47(5): 1403-1410.
[15] LI Zhi-hui, WANG Kun-wei, SONG Xian-min, LIU Xin-shan, SHEN Yao, LUO Rui-qi. Roundabout travel time prediction based on characteristics of lane choosing [J]. 吉林大学学报(工学版), 2017, 47(5): 1411-1419.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!