Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1590-1599.doi: 10.13229/j.cnki.jdxbgxb20191114

Previous Articles    

Influence of rearview mirror styling on water phase distribution on side windows

Wei LAN(),Jiang LIU,Li XIN,Jing-xi LI,Xing-jun HU,Jing-yu WANG(),Tao SANG   

  1. State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2019-12-06 Online:2020-09-01 Published:2020-09-16
  • Contact: Jing-yu WANG E-mail:lanwei99@126.com;wangjy@jlu.edu.cn

Abstract:

Based on the rearview mirrors of sedans, the Lattice Boltzmann method is used to study the flow field characteristics of the rearview mirrors. Combining aerodynamics with multiphase flow theory, the Lagrangian method is applied on the basis of the lattice Boltzmann method to study the water phase distribution on side windows caused by the rearview mirror on rainy days, and to investigate the pollution mechanism. Then the pollution effects of the mirror column and the mirror cover on the side window are studied. The mirror column factors include the length and size, and the mirror cover factors include the windward angle, the inside diffuser angle, the leading edge chamfer angle and the rear departure angle. The Results show that these factors have significant different influences on pollution location and pollution degree of the side windows. Increasing the column length, changing the inside diffuser angle of the cover to 0°, reducing the leading edge chamfer angle of the front cover and changing the rear departure angle to 0° will reduce the pollution level. The influence of the size of the mirror column and the windward angle of the mirror cover on the side window is complicated, but a lower pollution degree can also be obtained. The influence of each factor on the side window pollution is not independent.

Key words: aerodynamics, lattice Boltzmann, side window water pollution, rearview mirror, mirror column, mirror cover

CLC Number: 

  • U461.1

Fig.1

D3Q19 model"

Fig.2

Fastback DrivAer model"

Fig.3

Front windshield wiper"

Fig.4

Computation domain and VR zones setting"

Fig.5

Schematic diagram of emitter"

Table 1

Parameter settings"

参数
雨水属性密度/(kg·m-3)1000
黏性/(Pa·s)0.001
表面张力/(N·m-10.0728
重力/(m·s-2)9.81
表面材料属性再夹带模型激活
再夹带长度/mm0.3
飞溅模型激活
破裂模型激活
雨水发射器属性颗粒直径分布Gaussian
降雨量/(mm·hr-117

Fig.6

A-pillar section modification plan"

Fig.7

Body surface film thickness"

Fig.8

Water volume ratio of Z=0.69 m cross-section"

Fig.9

Mirror column length"

Fig.10

Body surface film thickness"

Table 2

RC values after changing mirror column length"

项目RCFRCRRC
Base0.1450.5030.360
Modification0.1240.3130.237

Fig.11

Velocity of Z=0.69 m cross-section"

Table 3

RC values of differentmirror column length"

长度RCFRCRRC
00.1450.5030.360
40.1450.4030.300
70.1290.3430.257
100.1240.3130.237

Fig.12

Mirror column size"

Fig.13

Body surface film thickness"

Table 4

RC values after changing mirror column size"

项目RCFRCRRC
Base0.1450.5030.360
Modification0.2240.5310.408

Fig.14

Velocity of Z=0.69 m cross-section"

Fig.15

Water volume ratio of Z=0.69 m cross-section"

Fig.16

Windward angle"

Fig.17

Body surface film thickness"

Table 5

RC values after changing windward angle"

项目RCFRCRRC
Base0.1450.5030.360
Modification0.1370.5040.357

Table 6

RC values of differentwindward angle"

方案区域面积污染面积RC
0.1370.5040.357
0.1600.4690.345
00.1450.5030.360
-3°0.1490.4750.344
-6°0.1310.3840.282
-9°0.1380.4280.312

Fig.18

Body surface film thickness"

Fig.19

Water volume ratio of Z=0.66 m cross-section"

Fig.20

Velocity of X=1.3 m cross-section"

Fig.21

Diffuser angle"

Fig.22

Body surface film thickness"

Table 7

RC values after changingdiffuser angle"

项目RCFRCRRC
Base0.2240.5310.408
Modification0.0950.4430.304

Fig.23

Velocity of Z=0.69 m cross-section"

Fig.24

Front chamfer angle"

Fig.25

Body surface film thickness"

Table 8

RC values after changing front chamfer angle"

项目RCFRCRRC
Base0.0950.4430.304
Modification0.0520.4190.272

Fig.26

Water volume ratio of Z=0.68 m cross-section"

Fig.27

Rear departure angle"

Fig.28

Body surface film thickness"

Table 9

RC values after changing rear departure angle"

项目RCFRCRRC
Base0.1450.5030.360
Modification0.1210.4500.318

Fig.29

Water volume ratio of Z=0.68 m cross-section"

Fig.30

Optimization model"

Fig.31

Body surface film thickness"

Table 10

RC values of optimization model"

项目RCFRCRRC
Base0.1450.5030.360
Optimization0.0770.3000.211
1 胡兴军. 汽车空气动力学[M]. 北京: 人民交通出版社, 2014.
2 Hu X, Liao L, Lei Y, et al. A numerical simulation of wheel spray for simplified vehicle model based on discrete phase method[J]. Advances in Mechanical Engineering, 2015, 7(7): 1-8.
3 Adrian P G, Kerry K, Duncan A L. Surface contamination of cars: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(9): 1160-1176.
4 Foucart H, Blain E. Water-flow simulation on vehicle panels by taking into account the calculated aerodynamic field[C]∥ SAE Technical Paper, 2005-01-3572.
5 Kruse N, Chen K H. Exterior water management using a custom euler-lagrange simulation approach[C]∥ SAE Technical Paper, 2007-01-0101.
6 Gaylard A P, Fagg M, Bannister M, et al. Modelling a-pillar water overflow: developing CFD and experimental methods[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2012, 5(2): 789-800.
7 Jilesen J, Spruss I, Kuthada T, et al. Advances in modelling a-pillar water overflow[C]∥ SAE Technical Papers, 2015-01-1549.
8 Gaylard A P, Kirwan K, Lockerby D A. Surface contamination of cars: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(9): 1160-1176.
9 Jilesen J, Gaylard A, Linden T, et al. Update on a-pillar overflow simulation[C]∥ SAE Technical Papers, 2018-01-0717.
10 廖庚华, 刘开贺, 孙少云. 某三厢车前侧窗雨污问题分析[C]∥2018中国汽车工程学会汽车空气动力学分会学术年会, 重庆, 2018.
11 Noelting S, Fares E. The lattice-boltzmann method: an alternative to LES for complex aerodynamic and aeroacoustic simulations in the aerospace industry[C]∥ SAE Technical Paper, 2015-01-2575.
12 Kotapati R, Keating A, Kandasamy S, et al. The lattice-boltzmann-VLES method for automotive fluid dynamics simulation, a review[C]∥ SAE Technical Paper, 2009-26-0057.
13 Chen H, Kandasamy S, Orszag S, et al. Extended boltzmann kinetic equation for turbulent flows[J]. Science, 2003, 301(5633): 633-636.
14 ANSYS Inc. FLUENT User's Guide14.0[M]. Canonsburg: ANSYS Inc, 2011.
15 Wieser D, Schmidt H J, Müller S, et al. Experimental comparison of the aerodynamic behavior of fastback and notchback drivAer models[J]. SAE International Journal of Passenger Cars Mechanical Systems, 2014, 7(2): 682-691.
16 王靖宇, 于旭涛, 胡兴军, 等. 汽车外后视镜流致振特性及其流动机理[J]. 吉林大学学报: 工学版, 2017, 47(6): 1669-1676.
Wang Jing-yu, Yu Xu-tao, Hu Xing-jun, et al. Fluid-induced vibration and flow mechanism of automotive external rearview mirror[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6): 1669-1676.
17 EXA Corporation:Powerflow Best Practices Guide[G].
18 辛俐, 兰巍, 刘江, 等. 汽车涉水车身表面污染仿真及控制[J]. 吉林大学学报: 工学版, 2019, 49(6): 1786-1794.
Xin Li, Lan Wei, Liu Jiang, et al. Simulation and control of pollution on automobile body surface during wading[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1786-1794.
19 杨小龙, 邹宏伟, 张泽坪. 厢式货车尾部非光滑表面导流板减阻效果研究[J]. 汽车工程, 2016, 38(7): 815-821.
Yang Xiao-long, Zou Hong-wei, Zhang Ze-ping. A study on the drag reduction effects of rear deflector with non-smooth surface for a cargo van[J]. Automotive Engineering, 2016, 38(7): 815-821.
20 Karbon K J, Longman S E. Automobile exterior water flow analysis using CFD and wind tunnel visualization[C]∥ SAE Technical Paper, 1998-02-23.
21 Philip G A, Bradley D. Simulation of rear glass and body side vehicle soiling by road sprays[J]. SAE International Journal of Passenger Cars Mechanical Systems, 2011, 4(1): 184-196.
22 辛俐, 高炳钊, 胡兴军, 等. 基于格子玻尔兹曼方法的侧窗水相分析与控制[J]. 哈尔滨工业大学学报, 2020, 52(1): 141-147.
Xin Li, Gao Bing-zhao, Hu Xing-jun, et al. Analysis and control of water phase of side window based on Boltzmann method[J]. Journal of Harbin Institute of Technology, 2020, 52(1): 141-147.
23 Bannister M. Drag and dirt deposition mechanisms of external rear view mirrors and techniques used for optimisation[J]. SAE Transactions, 2000, 109(6): 659-674.
[1] Li XIN,Wei LAN,Jiang LIU,Qin-lin WAN,Peng GUO,Xing-jun HU,Yang XIAO. Simulation and control of pollution on automobile body surface during wading [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1786-1794.
[2] Xing-jun HU,Zheng HUI,Peng GUO,Yang-hui ZHANG,Jing-long ZHANG,Jing-yu WANG,Fei LIU. Characteristics of aerodynamics for an automobile by fluid-structure coupled method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1414-1419.
[3] WANG Jing-yu, YU Xu-tao, HU Xing-jun, GUO Peng, XIN Li, GUO Feng, ZHANG Yang-hui. Fluid-induced vibration and flow mechanism of automotive external rearview mirror [J]. 吉林大学学报(工学版), 2017, 47(6): 1669-1676.
[4] LI Ming-da, KUI Hai-lin, MEN Yu-zhuo, BAO Cui-zhu. Aerodynamic drag of heavy duty vehicle with complex underbody structure [J]. 吉林大学学报(工学版), 2017, 47(3): 731-736.
[5] LI Shen-long, LIU Shu-cheng, XING Qing-kun, ZHANG Jing, LAI Yu-yang. Clutch friction pair motion effect caused by oil flow based on LBM-LES [J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[6] HAN Fei, ZHANG Su-min, LIU Jia-yi. Estimation of probability of blind zone of vehicle rearview mirror based on eyellipse [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 521-525.
[7] HU Xing-jun, YANG Bo, GUO Peng, WANG Jing-yu, YANG Yang, AN Yang. Aerodynamic drag reduction of van based on underbody skirt [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 108-113.
[8] ZHANG Ying-chao, WEI Gan, ZHANG Zhe. Aerodynamic numerical simulation of hatch-back car |with different spoilers [J]. 吉林大学学报(工学版), 2011, 41(01): 1-0005.
[9] ZHANG Ying-Chao, ZHANG Zhe, LI Jie. Virtual wind tunnel test based computational fluid dynamics [J]. 吉林大学学报(工学版), 2010, 40(增刊): 90-0094.
[10] YANG Bo,HU Xing-jun,WANG Fu-liang. Numerical simulation and verification of aerodynamic noise from side window region of minivan [J]. 吉林大学学报(工学版), 2010, 40(04): 915-0919.
[11] ZHANG Ying-chao,LI Jie,ZHANGZhe,HU Xing-jun. Effect of wind tunnel test section geometry on test result [J]. 吉林大学学报(工学版), 2010, 40(02): 346-0350.
[12] ZHANG Ying-chao|ZHANG Zhe|LI Jie|WEI Gan|LUO Shuang-hu. Car styling based aerodynamic numerical simulations [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 260-0263.
[13] SONG Min,JIANG Ping,YAN Guang-wu. Lattice Boltzmann model for multi-seismic resources pressure wave in isotropic medium [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 341-0343.
[14] Hu Xing-jun;Zhang Ying-chao;Li Sheng;Lin You-zhi;Wang Jia-xue;Yang Yong-bai . Numerical simulation of vehicle aerodynamic characteristics based on DRSM [J]. 吉林大学学报(工学版), 2008, 38(03): 504-0507.
[15] He Bao-qin,Wu Yun-zhu,Fu Li-min . Influence of vehicle shape on the aerodynamic characteristics of intelligent vehicle platoon [J]. 吉林大学学报(工学版), 2008, 38(01): 7-011.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!