吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 490-497.doi: 10.13229/j.cnki.jdxbgxb201702020

Previous Articles     Next Articles

Clutch friction pair motion effect caused by oil flow based on LBM-LES

LI Shen-long1, 2, LIU Shu-cheng2, XING Qing-kun2, ZHANG Jing2, LAI Yu-yang3   

  1. 1.Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100072, China;
    2.Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072,China;
    3.Soyotec Technologies Co., Ltd., Beijing 100081, China
  • Received:2015-11-25 Online:2017-03-20 Published:2017-03-20

Abstract: Axial movement of wet clutch friction pair caused by lubricating oil flow is one of the serious factors increasing drag losses and clutch failures. In order to study the friction pair axial movement caused by lubricating oil flow, a large eddy simulation model, wall adaptive local eddy viscosity model, was imported into a 2D single phase free surface mesoscopic model using lattice Boltzmann method to establish the friction parts and lubricating oil's fluid-solid-interaction LBM-LES digital simulation system under pressured lubricating condition. The influences of the relative position of oil nozzles, oil flow quantity and oil temperature on the friction pair axial moving process were investigated by digital simulation. Simulation results reveal that the friction pair axial motion law was affected by the position of oil nozzles and oil flow quantity. According to the simulation results, a novel oil groove was designed in place of traditional oil holes to inhibit the axial flow-caused-motion effect of the friction parts. This study may provide a theoretical basis for wet clutch improvement.

Key words: turn and control of fluid, wet clutch, lattice Boltzmann method, large eddy simulation, friction parts flow-caused-motion effect

CLC Number: 

  • TH137
[1] Yuan Y Q, Eysion A L,James H.An improved hydro-dynamic model for open wet transmission clutches[J]. Journal of Fluids Engineering, 2007, 27(3):333-337.
[2] 张志刚,周晓军,李永军,等. 湿式多片换档离合器带排转矩的预测模型[J]. 浙江大学学报:工学版, 2011, 45(4):708-713.
Zhang Zhi-gang, Zhou Xiao-jun, Li Yong-jun, et al. Prediction model of the torque of the wet multi disc clutch[J]. Journal of Zhejiang University (Engineering Science Edition), 2011, 45(4):708-713.
[3] McNamara G R, Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata[J]. Physical Review Letters, 1988, 61:2332-2335.
[4] 何雅玲,王勇,李庆,等. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社,2008.
[5] Holman D M, Brionnaud R M, Abiza Z. Solution to industry benchmark problems with the lattice-boltzmann code XFlow[EB/OL].[2015-04-06]. http://xflowcfd.com/pdf/ECCOMAS2012_XFlow.pdf
[6] 张雄,刘岩,马上. 无网格法的理论及应用[J]. 力学进展,2009,39(1):1-36.
Zhang Xiong, Liu Yan, Ma Shang. Theory and application of meshless method[J]. Advances in Mechanics, 2009, 39 (1):1-36.
[7] 张睿,陈红勋,王小永. 吸水口上自由表面旋涡的 LES-LBM模拟[J]. 排灌机械工程学报, 2011, 29(5):386-391.
Zhang Rui, Chen Hong-xun, Wang Xiao-yong. Simulation of the free surface vortex on the suction mouth of LES-LBM[J]. Journal of Drainage and Irrigation Machinery Engineering 2011, 29 (5): 386-391.
[8] 石岩,司海青,王兵. 基于LBM-LES方法的多段翼型流场数值模拟[J]. 航空计算技术, 2014, 44(4): 40-43.
Shi Yan, Si Hai-qing, Wang Bing. Numerical simulation of flow field in multi section airfoil based on LBM-LES method[J]. Aerospace Computing Technology, 2014, 44 (4): 40-43.
[9] Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200.
[10] Ducros F, Nicoud F, Poinsot T. Wall-adapting local eddy-viscosity models for simulations in complex geometries[C]∥Proceedings of 6th ICFD Conference on Numerical Methods for Fluid Dynamics Oxford,1988, 293-299.
[11] Deardorff J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 1970, 41(2): 453-480.
[1] ZHAO Er-hui, MA Biao, LI He-yan, DU Qiu, WU Jian-peng, MA Cheng-nan. Effect of non-uniform contact on friction characteristics of wet clutches [J]. 吉林大学学报(工学版), 2018, 48(3): 661-669.
[2] WANG Jia-yi, LIU Xin-hui, WANG Xin, QI Hai-bo, SUN Xiao-yu, WANG Li. Mechanism and inhibition for displacement shifting impact on digital secondary component [J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781.
[3] LI Ming-da, KUI Hai-lin, MEN Yu-zhuo, BAO Cui-zhu. Aerodynamic drag of heavy duty vehicle with complex underbody structure [J]. 吉林大学学报(工学版), 2017, 47(3): 731-736.
[4] WANG Li, LIU Xin-hui, WANG Xin, CHEN Jin-shi, LIANG Yi-jie. Shifting strategy of digital hydraulic transmission system for wheel loader [J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[5] ZHANG Min, LI Song-jing, CAI Shen. Microfluidic liquid color-changing glasses controlled by valveless piezoelectric micro-pump [J]. 吉林大学学报(工学版), 2017, 47(2): 498-503.
[6] GU Shou-dong, LIU Jian-fang, YANG Zhi-gang, JIAO Xiao-yang, JIANG Hai, LU Song. Characteristics of solder paste jetting valve driven by piezostack [J]. 吉林大学学报(工学版), 2017, 47(2): 510-517.
[7] YANG Hua-yong, WANG Shuang, ZHANG Bin, HONG Hao-cen, ZHONG Qi. Development and prospect of digital hydraulic valve and valve control system [J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505.
[8] YUAN Zhe, XU Dong, LIU Chun-bao, LI Xue-song, LI Shi-chao. Strength analysis of hydraulic retarder blade based on the process of thermal-fluid structure interaction [J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
[9] SHEN Wei, ZHANG Di-jia, SUN Yi, JIANG Ji-hai. Control design of the swash plate angle for hydraulic pump/motor based on FSMI method [J]. 吉林大学学报(工学版), 2016, 46(5): 1513-1519.
[10] ZHAO Cun-ran, LIU Wei, JIANG Ji-hai, SHAO Hui, TIAN Yong. Accelerated model of swash-plate axial piston pump [J]. 吉林大学学报(工学版), 2016, 46(4): 1124-1129.
[11] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, YANG Li-guang, XI Yuan, LIU Jin-qiao. Hydraulic system thermal characteristics of loader working device [J]. 吉林大学学报(工学版), 2016, 46(3): 811-817.
[12] CHEN Jin-shi, WANG Guo-qiang, GONG Xun, WANG Xin, WANG Li, DU Yang. Characteristics of cartridge one-way relief valve [J]. 吉林大学学报(工学版), 2016, 46(2): 465-470.
[13] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, LIU Yu-fei, XI Yuan. Match and simulation analysis of hydraulic system radiator of wheel loader [J]. 吉林大学学报(工学版), 2015, 45(4): 1124-1129.
[14] WEN De-sheng, LIU Qiao-yan, LIU Zhong-xun, GAO Jun-feng, ZHOU Rui-bin, LYU Jian-sen. Principle and experiment validation of roller tip-vanetype double-stator multi-speed motor [J]. 吉林大学学报(工学版), 2015, 45(4): 1130-1138.
[15] JIANG Wan-lu,LU Chuan-qi,ZHU Yong. HHT and fuzzy C-means clustering-based fault recognition for axial piston pump [J]. 吉林大学学报(工学版), 2015, 45(2): 429-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!