Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 840-846.doi: 10.13229/j.cnki.jdxbgxb20200109

Previous Articles     Next Articles

Method for checking bonding strength of high⁃speed EMU side window based on residual strength

Yi-sa FAN1(),Jing-xin NA2,Lin-jian SHANGGUAN1()   

  1. 1.School of Mechanical Engineering,North China University of Water Resources and Electric Power,Zhengzhou 450045,China
    2.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2020-03-04 Online:2021-05-01 Published:2021-05-07
  • Contact: Lin-jian SHANGGUAN E-mail:fanyisa123@163.com;sgljbh@163.com

Abstract:

A method for checking the bonding strength of high-speed Electric Multiple Units (EMU) side window based on residual strength is proposed from the application point of engineering considerations. This method enables to check the bonding strength of the adhesive layer by combination of accelerated aging experiments and simulation analysis. Using the implementation of the program to complete the test results of the display, obtaining the safety margin cloud map of adhesive layer, which is convenient for the engineering staff. Finally, the effectiveness of the method is verified by the actual vehicle model.

Key words: hydrothermal cycle, residual strength, normal-shear ratio, EMU train, safety margin

CLC Number: 

  • U266.2

Table 1

Mechanical property of adhesive and substrate"

材料杨氏模量/MPa泊松比密度/(kg·m-3
ISR 70-084.30.441400
铝合金71 0000.332730

Fig.1

Geometries and dimensions ofthe SLJ and BJ specimens"

Fig.2

Geometries and dimensions of the SJ specimens"

Fig.3

Orientation of stress vectors withinadhesive of scarf joints"

Fig.4

Single-cycle data of the hygrothermal cycling"

Table 2

Experimental data of weatherability adhesion"

试件

编号

粘接试件角度/(°)
9075604530150
14.714.314.414.323.803.603.73
24.414.594.293.944.023.824.07
34.534.444.374.254.274.323.70
44.714.674.424.144.094.323.90
54.674.754.654.503.943.653.97

Table 3

Residual strength values of differentnormal and shear ratio specimen"

粘接角度/(°)正剪比总应力/MPa正应力/MPa剪应力/MPa
90+∞4.614.610.00
753.734.554.391.18
601.734.433.842.22
451.004.232.992.99
300.584.032.013.49
150.273.951.023.82
00.003.900.003.90

Fig.5

Strength check curve of bonding structure"

Fig.6

Schematic diagram of the stresscoordinate transformation"

Fig.7

Schematic diagram of the strength evaluation"

Fig.8

Lift-off mode (forced displacementin front of left)"

Fig.9

Cloud map of adhesive layer ofdangerous side window"

Fig.10

Strength check method executionprogram flow chart"

Fig.11

Safety margin map of high-speed EMU side window bonding structure strength check result"

1 Marques E A S, da Silva L F M, Banea M D, et al. Adhesive joints for low-and high-temperature use: an overview[J]. The Journal of Adhesion, 2015,91(7):556-585.
2 Xu W, Wei Y G. Assessments for impact of adhesive properties: modeling strength of metallic single lap joints[J]. Journal of Adhesion Science and Technology, 2013, 27(1):1-21.
3 庄蔚敏, 施宏达, 解东旋,等. 钢铝异质无铆钉粘铆复合连接胶层厚度分布[J]. 吉林大学学报:工学版, 2020, 50(1):100-106.
Zhuang Wei-min,Shi Hong-da,Xie Dong-xuan, et al. Thickness distribution of adhesive layer in dissimilar clinch-adhesive hybrid joint with steel and aluminum alloy[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1):100-106.
4 Kinloch A J. Toughening epoxy adhesives to meet today's challenges[J]. Mrs Bulletin, 2003, 28(6): 445-448.
5 Banea M D, da Silva L F M, Campilho R. Moulds design for adhesive bulk and joint specimens manufacturing[J]. Assembly Automation, 2012, 32(3):284-292.
6 那景新, 刘浩垒, 范以撒, 等. 湿热环境对车用粘接剂拉伸强度的影响[J]. 吉林大学学报:工学版, 2019, 49(3):822-828.
Na Jing-xin,Liu Hao-lei,Fan Yi-sa, et al. Effect of hygrothermal environment on vehicle adhesive tensile strength[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3):822-828.
7 Spiryagin M, Lee K S, Yoo H H, al et, Modeling of adhesion for railway vehicles[J]. Journal of Adhesive Science and Technology, 2008, 22(10):1017-1034.
8 Grant L D R, Adams R D, Silva L F M D. Effect of the temperature on the strength of adhesively bonded single lap and T joints for the automotive industry[J]. International Journal of Adhesion and Adhesives, 2009, 29(5):535-542.
9 He X, Gu F, Ball A. Fatigue behaviour of fastening joints of sheet materials and finite element analysis[J]. Advances in Mechanical Engineering, 2013, 2013(3):533-542.
10 Pulung N I, Arief B B, Muhammad A. Evaluation of bonding strength and fracture criterion for aluminum alloy-woven composite adhesive joint based on cohesive zone model[J]. International Journal of Adhesion and Adhesives, 2018, 85:193-201.
11 Hart-Smith L J. Adhesive-bonded single-lap joints[EB/OL]. [2020-02-02].
12 Adams R D, Comyn J, Wake W C. Structural Adhesive Joints in Engineering[M]. Amsterdam: Elsevier Applied Science Publishers, 1997.
13 Adams R D, Harris J A. The influence of local geometry on the strength of adhesive joints[J]. International Journal of Adhesion and Adhesives, 1987, 7(2):69-80.
14 Alfano M, Furgiuele F, Leonardi A, et al. Mode I fracture of adhesive joints using tailored cohesive zone models[J]. International Journal of Fracture, 2009, 157(1):193-204.
15 Qiao Pi-zhong, Chen Ying. Cohesive fracture simulation and failure modes of FRP-concrete bonded interfaces[J]. Theoretical and Applied Fracture Mechanics, 2008, 49(2):213-225.
16 Feraren P, Jensen H M. Cohesive zone modelling of interface fracture near flaws in adhesive joints[J]. Engineering Fracture Mechanics, 2004, 71(15):2125-2142.
17 Moura M F S F D, Gonçalves J P M, Chousal J A G, et al. Cohesive and continuum mixed-mode damage models applied to the simulation of the mechanical behaviour of bonded joints[J]. International Journal of Adhesion and Adhesives, 2008, 28(8):419-426.
18 Abdel W M M, Ashcroft I A, Crocombe A D, et al. Prediction of fatigue thresholds in adhesively bonded joints using damage mechanics and fracture mechanics[J]. Journal of Adhesion Science and Technology, 2001, 15(7):763-781.
19 Abdel W M M, Hilmy I, Ashcroft I A, et al. Evaluation of fatigue damage in adhesive bonding: part 1: bulk adhesive[J]. Journal of Adhesion Science and Technology, 2010, 24(2):305-324.
20 Martiny P, Lani F, Kinloch A J, et al. A multiscale parametric study of mode I fracture in metal-to-metal low-toughness adhesive joints[J]. International Journal of Fracture, 2012, 173(2):105-133.
21 Weißgraeber P, Becker W. Finite fracture mechanics model for mixed mode fracture in adhesive joints[J]. International Journal of Solids and Structures, 2013, 50(14/15):2383-2394.
22 Hutchinson J W, Suo Z. Mixed mode cracking in layered materials[J]. Advances in Applied Mechanics, 1992, 29(8):63-191.
23 Wang C H, Rose L R F. Compact solutions for the corner singularity in bonded lap joints[J]. International Journal of Adhesion and Adhesives, 2000, 20(2):145-154.
24 Na J X, Liu Y, Cai L, et al. An adhesive joint strength evaluation method and its application in mechanical engineering[J]. Journal of Adhesive Science and Technology, 2015, 30(2):131-144.
25 . Ahesive bonding of railway vehicles and parts—part 2: qualification of manufacturer of adhesive bonded materials, quality assurance[S].
26 Wang C H, Rose L R F. Compact solutions for the corner singularity in bonded lap joints[J]. International Journal of Adhesion and Adhesives, 2000, 20(20):145-154.
27 . 轨道车辆及部件的粘接[S].
28 Na J X, Liu Y, Fan Y S, et al. Effect of temperature on the joint strength of a silyl modified polymer based adhesive[J]. The Journal of Adhesion, 2017,93(8): 626-639.
[1] Wen-long MU,Jing-xin NA,Wei TAN,Guang-bin WANG,Hao SHEN,Jian-ze LUAN. Residual strength prediction of adhesive CFRP-aluminum alloy adhesively bonded joint based on FTIR analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!