Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 977-988.doi: 10.13229/j.cnki.jdxbgxb20200557

Previous Articles     Next Articles

Shear capacity of circular steel tube confined H⁃SRC concrete column steel beam joint with ring beam

Yan DAI1(),Shao-feng NIE2,Tian-hua ZHOU2   

  1. 1.Shaanxi Key Laboratory of Safety and Durability of Concrete Structures,Xijing University,Xi'an 710123,China
    2.School of Civil Engineering,Chang'an University,Xi'an 710061,China
  • Received:2020-07-24 Online:2021-05-01 Published:2021-05-07

Abstract:

In this paper, experimental and nonlinear finite element analysis methods are used to study the mechanical characteristics of the joint area. It is clear that the shear bearing capacity of the joint area is mainly borne by the components of the joint area, and the contribution of the components of the joint area to the shear bearing capacity is analyzed;At the same time, through the analysis of the stress mechanism of each component in the joint area, the calculation method of shear capacity of each component in the joint area is derived;Finally, the shear capacity formula of the new joint is obtained by superposition principle,Compared with the test and finite element analysis results, the formula is safe and reasonable, and can meet the engineering seismic design principle of “strong joints and weak members”.

Key words: construction engineering, circular steel tube confined H-SRC concrete column, ring beam, shear capacity, joint area, super-position formula

CLC Number: 

  • TU398

Fig.1

Structural diagram of specimen"

Fig.2

Loading schematic diagram and device schematic diagram"

Fig.3

Full view of loading process"

Fig.4

Calculation diagram of measured horizontal shear force in joint area"

Fig.5

Hysteretic curve of horizontal shear force-displacement at the top of column"

Fig.6

Skeleton curve of horizontal shear force-displacement at the top of column"

Table 1

Measured value of horizontalshear of specimen"

节点编号屈服状态极限荷载状态破坏状态
SH-12375.522638.772853.18
SH-21981.912497.442658.96

Fig.7

Overall condition of specimen after failure"

Table 2

Measured value of shear force ofdifferent parts in joint area"

节点编号参数屈服状态极限荷载状态破坏状态
SH-1V2375.522638.772853.18
Vw90.50101.80109.50
Vsv19.8429.7559.51
V其他2265.182507.222684.17
SH-2V1981.912497.442658.96
Vw75.1391.91-
Vsv17.3624.79-
V其他1889.422380.74-

Fig.8

Change curve of measured value of horizontal shear force during loading of eachcomponent in joint area"

Fig.9

Structural map of joint area"

Fig.10

Loading and boundary conditions of joint area"

Fig.11

Finite element model of joint area"

Table 3

Description of finite element model of joint area"

模型编号包含部件
JDQ-1柱混凝土
JDQ-2柱混凝土、柱钢筋
JDQ-3柱混凝土、柱钢筋、柱型钢腹板
JDQ-4柱混凝土、柱钢筋、柱型钢腹板、补强板
JDQ-5柱混凝土、柱钢筋、柱型钢腹板、补强板、柱型钢翼缘及加劲肋
JDQ-6柱混凝土、柱钢筋、柱型钢腹板、补强板、柱型钢翼缘及加劲肋、钢筋混凝土环梁
JDQ-7柱混凝土、柱钢筋、柱型钢腹板、补强板、柱型钢翼缘及加劲肋、钢筋混凝土环梁、悬臂梁腹板
JDQ-8柱混凝土、柱钢筋、柱型钢腹板、补强板、柱型钢翼缘及加劲肋、钢筋混凝土环梁、悬臂梁腹板及翼缘

Fig.12

Horizontal shear-displacementcurve of joint area"

Table 4

Ultimate shear capacity of joint area model"

模型编号SH-1SH-2
JDQ-1617.18617.18
JDQ-2746.90746.90
JDQ-3817.55817.55
JDQ-4929.89929.89
JDQ-51215.241215.24
JDQ-63625.473470.92
JDQ-74623.614396.71
JDQ-85359.835101.95

Table 5

Contribution of the components in the jointarea to the shear capacity"

承载力试件
SH-1SH-2
柱混凝土V1617.18617.18
柱钢筋V2129.72129.72
柱型钢腹板V370.6570.65
补强板V4112.34112.34
柱型钢翼缘V5285.35285.35
钢筋混凝土环梁V62410.232255.68
悬臂梁腹板V7998.14925.79
悬臂梁翼缘V8736.22705.24
抗剪极限承载力V5359.835101.95

Table 6

Shear capacity of each componentin the joint area"

承载力试件
SH-1SH-2
柱混凝土V1902.53902.53
柱钢筋V2129.72129.72
柱型钢腹板V370.6570.65
补强板V4112.34112.34
钢筋混凝土环梁V63146.452960.92
悬臂梁腹板V7998.14925.79
抗剪极限承载力V5359.835101.95

Fig.13

Horizontal shear-displacement curveunder different axial compressionratio in joint area(SH-1)"

Table 7

Ultimate shear capacity of joint area underdifferent axial compression ratio"

试件不同轴压比下试件承载力
0.100.200.350.500.700.95
SH-15027.55144.95359.85442.95696.35942.3
SH-24786.24900.95102.05173.45425.85656.0

Fig.14

Stress mechanism of columnconcrete in joint area"

Fig.15

Linear regression analysis of axial compression ratio and shear influence coefficient"

Table 8

Comparison of shear capacity calculatedby actual measurement, finite elementand formula in joint area"

试件V实测V公式V有限元V有限元/V实测V有限元/V公式
SH-12853.183504.265359.831.8791.530
SH-22658.963496.875101.951.9191.459
1 周绪红, 刘界鹏. 钢管约束混凝土柱的性能与设计[M]. 北京:科学出版社, 2010.
2 Zhou X, Liu J. Seismic behavior and strength of tubed steel reinforced-concrete(SRC)short columns[J]. Journal of Constructional Steel Research, 2010, 66(7):885-896.
3 Liu F, Gardner L, Yang H. Post-fire behavior of reinforced concrete stub columns confined by circular steel tubes[J]. Journal of Consturctional Steel Research, 2014, 102:82-103.
4 甘丹, 周绪红, 闫标, 等. 圆钢管约束钢筋混凝土环筋式节点受力性能试验研究[J]. 建筑结构学报, 2018, 39(4):91-101.
Gan Dan, Zhou Xu-hong, Yan Biao, et al. Experimental studies on mechanical behavior of circular tubed reinforced concrete joints with ring ribs[J]. Journal of Building Structure, 2018, 39(4):91-101.
5 戴岩, 聂少锋, 周天华. 带环梁的方钢管约束钢骨混凝土柱-钢梁节点滞回性能有限元分析[J]. 吉林大学学报:工学版, 2018, 48(5):1426-1435.
Dai Yan, Nie Shao-feng, Zhou Tian-hua. Finite element analysis of hysteretic behavior of square steel tube confined steel reinforced concrete column steel frame ring beam joint[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5):1426-1435.
6 戴岩, 聂少锋, 周天华. 环梁式圆钢管约束H型钢混凝土柱-钢梁节点的抗震性能[J]. 华南理工大学学报:自然科学版, 2019, 47(5):110-122.
Dai Yan, Nie Shao-feng, Zhou Tian-hua. Seismic behavior of Circular steel tube confined H steel reinforced concrete column steel frame ring beam joint[J]. Journal of South China University of Technology(Natural Science Edition), 2019, 47(5):110-122.
7 赵鸿铁. 钢与混凝土组合结构[M]. 北京:科学出版社, 2001.
8 . 组合结构设计规范[S].
9 钟善桐, 白国良. 高层建筑组合结构框架梁柱节点分析与设计[M]. 北京:人民交通出版社, 2006.
10 曾磊. 型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D]. 西安:西安建筑科技大学土木工程学院, 2008.
Zeng Lei. Research on seismic behaviors and design method of steel reinforced high strength and high performance concrete frame joints[D]. Xi'an:School of Civil Engineering, Xi'an University of Architecture and Technology, 2008.
11 . 混凝土结构设计规范[S].
12 苏小卒, 刘庆文, 陆余年, 等. 预应力混凝土水平加腋框架节点抗震性能研究[J]. 同济大学学报:自然科学版, 2008, 36(6):717-721.
Su Xiao-zu, Liu Qing-wen, Lu Yu-nian, et al. Experiment on seismic behavior of prestressed concrete frame joints with spread-ended beams[J]. Journal of Tongji University(Natural Science), 2008, 36(6):717-721.
[1] Guang-tai ZHANG,Lu-yang ZHANG,Guo-hua XING,Yin-long CAO,Bao YI. Seismic performance of steel⁃polypropylene hybrid fiber reinforced concrete shear wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 946-955.
[2] Er-gang XIONG,Han XU,Ci TAN,Jing WANG,Ruo-yu DING. Shear strength of reinforced concrete beams based on elastoplastic stress field theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 259-267.
[3] DAI Yan, NIE Shao-feng, ZHOU Tian-hua. Finite element analysis of hysteretic behavior of square steel tube confined steel reinforced concrete column steel frame ring beam joint [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1426-1435.
[4] SU Ying-she, YANG Yuan-yuan. Seismic compression performance of the concrete under high temperature [J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442.
[5] GUO Jun-ping, DENG Zong-cai, LU Hai-bo, LIN Jin-song. Experiment on shear behavior of reinforced concrete beams strengthened with prestressed high strength steel wire mesh [J]. 吉林大学学报(工学版), 2014, 44(4): 968-977.
[6] YANG Ai-wu,ZHOU Jin,KONG Ling-wei. Experiment on mechanical properties of stabilized soft dredger fill [J]. 吉林大学学报(工学版), 2014, 44(3): 661-667.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!