Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1261-1268.doi: 10.13229/j.cnki.jdxbgxb20200390

Previous Articles    

Travelers′ choice behavior of autonomous vehicles based on latent class

Zhi-wei LIU1(),Jian-rong LIU2(),Wei DENG3   

  1. 1.School of Civil Engineering and Architecture,Wuhan Polytechnic University,Wuhan 430023,China
    2.School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,China
    3.School of Transportation,Southeast University,Nanjing 210096,China
  • Received:2020-06-03 Online:2021-07-01 Published:2021-07-14
  • Contact: Jian-rong LIU E-mail:tonyliuzhiwei@whpu.edu.cn;ctjrliu@scut.edu.cn

Abstract:

In order to analyze the preferences heterogeneity of travelers and the influence of autonomous vehicles on travel behavior, this study incorporates the latent psychological variables into the latent-class conditional Logit model based on the theoretical framework of the extended technology acceptance model. A hybrid choice model is established to conduct empirical research. The results show that compared with the traditional conditional Logit model, the latent-class conditional Logit model has higher fitness. Respondents can be divided into three subgroups: the shared autonomous vehicles preference subgroup, car preference subgroup, and private autonomous vehicles preference subgroup. The three subgroups account for 46.5%, 13.0% and 40.5%, respectively. Travelers from the car preference subgroup evaluate the walking and waiting time and travel costs positively, while travelers from the private autonomous vehicle preference subgroup evaluate parking costs negatively. The two latent variables of perceived ease of use and perceived trust have a significant influence on the classification of latent class.

Key words: traffic engineering, travel mode choice, latent-class conditional Logit model, latent variable, autonomous vehicle

CLC Number: 

  • U121

Table 1

Indicator variables of psychological latent variables"

潜在变量显示变量符号
感知有用(PU)无人驾驶车辆可以降低交通事故pu1
无人驾驶车辆可以降低交通拥堵pu 2
无人驾驶车辆可以降低交通成本pu 3
无人驾驶车辆可以改善驾驶行为表现pu 4
感知易用(PEU)学习使用无人驾驶车辆对我来说很简单peu 1
无人驾驶车辆的使用很清晰和容易理解peu 2
无人驾驶车辆的使用不需要太多的心理负担peu 3
感知信任(PT)无人驾驶车辆是可靠的pt1
无人驾驶车辆是值得信赖的pt 2
总之,我完全相信无人驾驶车辆pt 3
社会影响(SN)对我很重要的人支持我使用无人驾驶车辆sn1
对我很重要的人希望我将来能使用无人驾驶车辆sn 2
如果身边的人使用无人驾驶车辆,我也会使用的sn 3
行为意向(BIU)未来我会使用无人驾驶车辆biu1
未来我会购买无人驾驶车辆biu2
我会向亲朋好友推荐使用无人驾驶车辆biu3

Fig.1

Example of SP choice scenario"

Table 2

Descriptive statistics of respondents"

变量表示符号定义百分比/%
性别GEND45.73
54.27
年龄AGE130岁及以下66.00
AGE231~45岁13.90
AGE346~55岁12.23
AGE455岁以上7.87
受教育程度EDU高中及以下10.05
大专11.39
本科66.67
硕士及以上11.89

家庭月收入

(元/月)

HINC15000以下24.29
HINC25000~1000041.71
HINC310000~2000021.60
HINC420000以上12.40

是否有学龄儿

CHILD53.10
46.90
是否拥有驾照LICENSE42.38
57.62

家庭是否拥有

小汽车

CAR63.99
36.01

是否拥有公交

IC卡

ICARD77.72
22.28
家庭总人口数HSIZE15.36
29.21
340.20
420.60
5人及以上24.62
通勤方式CAR2WORK使用小汽车上班30.65
BUS2WORK使用公交车上班18.09
TRAIN2WORK使用地铁上班21.94
OTHERS其他29.32

Table 3

Reliability and validity test of sample"

变量题项KMO

因子

载荷

Cronbach′s Alpha
感知有用性(PU)pu 10.85070.9180.931
pu 20.927
pu 30.923
pu 40.876
感知易用性(EU)peu 10.77500.9560.956
peu 20.964
peu 30.954
感知信任(PT)pt 10.76800.9740.965
pt 20.972
pt 30.955
社会影响(SN)sn 10.76800.9740.965
sn 20.972
sn 30.955
行为意向(BIU)biu 10.77600.9790.932
biu 20.971
biu 30.968

Table 4

Fitness statistics of confirmatory factor analysis"

RMSEACFITLISRMR
参考值≤0.08≥0.900≥0.900<0.08
模型参数0.080.9760.9670.020

Table 5

Comparison of values of CAIC and BIC"

类别CAICBIC
236823655
327312683
427842715
528482758
629282817

Table 6

Regression coefficient of latent class conditional logit model"

ClassesVariableCoef.SEzP>z
choice1wwt-0.0950.029-3.320.001
ivt-0.0520.014-3.660
tc-0.0430.012-3.590
pc0.0330.0410.80.422
sasc2.2220.3057.30
casc-0.7010.326-2.150.031
choice2wwt0.1990.1001.990.047
ivt0.0200.0600.330.74
tc0.1520.0682.240.025
pc-0.0180.142-0.120.902
sasc2.7771.5291.820.069
casc4.3791.4443.030.002

choice3

wwt0.0900.0571.590.112
ivt-0.0120.020-0.60.551
tc-0.0030.021-0.170.867
pc-0.2100.082-2.540.011
sasc-4.9840.707-7.050
casc-2.8210.590-4.780
传统条件Logit模型wwt-0.0490.013-3.870
ivt-0.0160.005-3.080.002
tc-0.0080.005-2.020.043
pc-0.0600.019-3.240.001

Table 7

Impact of demographic characteristics on classification"

ClassesVariableCoef.SEzP>z
share1GEND0.1270.2330.550.584
AGE11.4210.4273.330.001
OCCU-0.2690.131-2.060.039
HINC11.1490.2744.200
HINC2-0.6100.409-1.490.136
LICENSE-0.8550.259-3.300.001
CAR-0.1420.239-0.590.553
CAR2WORK-1.3490.294-4.590
TRAIN2WORK0.9700.2913.330.001
PU1.1930.8331.430.152
PEU-0.8930.339-2.630.008
SN0.2570.3070.840.403
PT0.7850.6301.250.213
BIU-1.5750.985-1.600.110
_cons1.2300.5262.340.019
share2GEND0.4520.4291.050.293
AGE11.9810.6812.910.004
OCCU-0.6420.220-2.910.004
HINC11.7460.4903.560
HINC23.0960.6554.720
LICENSE0.1560.4500.350.729
CAR0.0890.4720.190.85
CAR2WORK-1.1820.570-2.070.038
TRAIN2WORK-0.8910.597-1.490.135
PU-1.1841.223-0.970.333
PEU-0.7320.527-1.390.165
SN-0.0180.489-0.040.971
PT-0.7921.024-3.180.010
BIU-1.4161.493-0.950.343
_cons-2.1230.989-2.150.032

Fig.2

Impacts of age, monthly income, commute-by-car-or-not on latent class of travelers"

1 Molin E, Mokhtarian P, Kroesen M. Multimodal travel groups and attitudes: a latent class cluster analysis of Dutch travelers[J]. Transportation Research Part A: Policy and Practice, 2016, 83(1): 14-29.
2 Zhang X, Guan H, Zhu H, et al. Analysis of travel mode choice behavior considering the indifference threshold[J]. Sustainability, 2019, 11(19): 1-23.
3 Boxall P C, Adamowicz W L. Understanding heterogeneous preferences in random utility models: a latent class approach[J]. Environmental and resource economics,2002, 23(4): 421-446.
4 Sarrias M, Daziano R. Multinomial Logit models with continuous and discrete individual heterogeneity in R: the GMNL package[J]. Journal of Statistical Software,2017, 79(2): 1-46.
5 Ardeshiri A, Vij A. Lifestyles, residential location, and transport mode use: a hierarchical latent class choice model[J]. Transportation Research Part A: Policy and Practice,2019, 126(10): 342-359.
6 刘建荣,刘志伟. 基于出行者潜在类别的公交出行行为研究[J]. 华南理工大学学报:自然科学版, 2019, 47(6):119-126.
Liu Jian-rong, Liu Zhi-wei. Analysis of bus users' behavior based on latent class[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(6): 119-126.
7 Ben-Akiva M, Mcfadden D, Gärling T, et al. Extended framework for modeling choice behavior[J]. Marketing Letters, 1999, 10(3): 187-203.
8 景鹏,隽志才,查奇芬. 考虑心理潜变量的出行方式选择行为模型[J]. 中国公路学报, 2014, 27(11): 84-92, 108.
Jing Peng, Zhi-cai Juan, Zha Qi-fen. Incorporating psychological latent variables into travel mode choice model[J]. China Journal of Highway Transportation, 2014, 27(11): 84-92, 108.
9 Davis F D, Bagozzi R P, Warshaw P R. User acceptance of computer technology: a comparison of two theoretical models[J]. Management science, 1989, 35(8): 982-1003.
10 Venkatesh V, Davis F D. A model of the antecedents of perceived ease of use: development and test[J]. Decision Sciences, 1996, 27(3): 451-481.
11 Mou J, Shin D, Cohen J F. Trust and risk in consumer acceptance of e-services[J]. Electronic Commerce Research, 2016,16(1):141.
12 Bansal P, Kockelman K M, Singh A. Assessing public opinions of and interest in new vehicle technologies: an Austin perspective[J]. Transportation Research Part C: Emerging Technologies, 2016, 67(6): 1-14.
13 Train K E. EM algorithms for nonparametric estimation of mixing distributions[J]. Journal of Choice Modelling, 2008, 1(1): 40-69.
14 Pacifico D, Yoo H I. Lclogit: a Stata command for fitting latent-class conditional Logit models via the expectation-maximization algorithm[J]. The Stata Journal, 2013, 13(3): 625-639.
15 Panagiotopoulos I, Dimitrakopoulos G. An empirical investigation on consumers' intentions towards autonomous driving[J]. Transportation Research Part C: Emerging Technologies, 2018, 95(10): 773-784.
16 Yáñez M F, Raveau S, Ortúzar J D D. Inclusion of latent variables in mixed Logit models: modelling and forecasting[J]. Transportation Research Part A: Policy and Practice,2010, 44(9): 744-753.
17 Wang J, Wang X. Structural Equation Modeling: Applications Using Mplus[M]. Chichester: John Wiley & Sons, 2012.
[1] Wei-xiong ZHA,Qi-yan CAI,Jian LI,Li-xin YAN. Optimization of offset of urban arterial signal coordination under condition of vehicle entry and exit on side road [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 565-574.
[2] LUAN Xin, DENG Wei, CHENG Lin, CHEN Xin-yuan. Mixed Logit model for understanding travel mode choice behavior of megalopolitan residents [J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[3] LI Zhi-hui, HU Yong-li, ZHAO Yong-hua, MA Jia-lei, LI Hai-tao, ZHONG Tao, YANG Shao-hui. Locating moving pedestrian from running vehicle [J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[4] LI Wen-ping,YANG Jing,ZHANG Jian-pei,YIN Gui-sheng. CCA-based algorithm for personalized privacy preservation in trajectory [J]. 吉林大学学报(工学版), 2015, 45(2): 630-638.
[5] SUN Yi-xuan,SHAO Chun-fu,YUE Hao,ZHU Liang. Urban traffic accident severity analysis based on sensitivity analysis of support vector machine [J]. 吉林大学学报(工学版), 2014, 44(5): 1315-1320.
[6] DONG Hong-hui,SUN Xiao-liang,JIA Li-min,QIN Yong. Multimode traffic volume prediction model [J]. 吉林大学学报(工学版), 2011, 41(03): 645-649.
[7] WANG Dian-hai,QI Hong-sheng. Road travel time under signal control [J]. 吉林大学学报(工学版), 2010, 40(03): 655-0660.
[8] LIU Yan,GAO Qing,HUANG Yong,Yü Ming,ZHANG Zhong-jin. Seasonal running performance in hydronic ice-snow melting on road by using the earth energy [J]. 吉林大学学报(工学版), 2010, 40(01): 72-0076.
[9] JIANG Gui-yan,WU Chao-teng. Link segmenting model of road network for the travel time collection based on GPS [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 177-0181.
[10] Jiang Guiyan, Zheng Zuduo, Bai Zhu, Dai Leilei, Zhao Jiaqi. Simulationbased assessment of variable message signs route guidance information under congestion condition [J]. 吉林大学学报(工学版), 2006, 36(02): 183-0187.
[11] YANG Zhaosheng, YANG Qingfang, FENG Jinqiao. Combined time-space average speed information fusion algorithm and its application [J]. 吉林大学学报(工学版), 2004, (4): 675-678.
[12] YANG Zhihong, YANG Zhaosheng, YU Dexin, CHEN Lin. Travel time prediction method based on Malcov queuing model [J]. 吉林大学学报(工学版), 2004, (4): 671-674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!