Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1306-1316.doi: 10.13229/j.cnki.jdxbgxb20191055

Previous Articles    

Scarp tire rubber pads′s practical restoring force model under the effect of thermal oxidation aging

Guang-tai ZHANG1(),Ming-yang WANG1,Qiao-jun GUO1,Jin-peng ZHANG1,Dong-liang LU2   

  1. 1.School of Architecture and Engineering,Xinjiang University,Urumqi 830047,China
    2.Wulanchabu Electric Power Survey and Design Institute Co. ,Ltd. ,Wulanchabu 012000,China
  • Received:2019-08-26 Online:2021-07-01 Published:2021-07-14

Abstract:

In order to study the restoring force model of Scarp Tire Rubber Pads (STPs) under the thermal oxidation aging, cyclic loading tests with different aging time were performed and the hysteretic dissipated energy characteristics of STPs were analyzed. Based on the double spring model, and combined with the results of STP pseudo-static test, this paper presented a restoring force model for STPs and established a two-spring restoring force model for STPs with different aging time and design compressive stress. By comparison of MATLAB simulation of hysteretic performance and experimental hysteretic performance, it is verified that the model could well reflect the energy dissipation performance of STPs. The results show that, with the increase of aging time, the horizontal equivalent stiffness, unit cycle energy dissipation area and equivalent damping ratio of STPs all increase first and then decrease, reaching the maximum in actual aging of 50 a, which can meet the isolation energy consumption of rural buildings within 50 a. The establish restoring force model under the condition of hot oxygen aging can better simulate the hysteretic characteristics of STPs under different aging time and different design compressive stress, which can provide theoretical reference for the application of STPs in isolated buildings.

Key words: thermo-oxidative aging, scarp tire rubber pads, double spring restoring force model, design compressive stress

CLC Number: 

  • TU352.12

Fig.1

Actual picture of STP"

Fig.2

Connection type of STP"

Fig.3

STP placement diagram in loading device"

Fig.4

Loading device experiment diagram"

Fig.5

Displacement-time loading curve"

Table 1

Aging experiment content of scrap tire rubber pads"

试件编号

温度

/℃

试验时间

/h

相当条件

试件

个数

STP?25?X1007720 ℃×25 a15
STP?50?X10015420 ℃×50 a15
STP?75?X10023120 ℃×75 a15
STP?100?X10030820 ℃×100 a15

Fig.6

Experimental and simulated hysteresis curves(β=0.7,γ=0.3)"

Fig.7

STP skelecton curves"

Fig.8

Diagram of the double spring model"

Table 2

Characteristic parameters of the STP"

老化时间/hP=4 MPaP=5 MPaP=6 MPa
FY/kNY/mm?FY/kNY/mm?FY /kNY/mm?
011.820.40.88337.425.00.91944.229.91.020
7730.912.60.93747.028.80.60786.940.20.759
15434.75.00.97656.437.61.030173.066.60.897
23137.811.60.88025.223.10.66798.142.10.735
30838.17.00.9146.014.30.77856.330.01.030

Fig.9

MATLAB modeling flowchart"

Table 3

Comparison of equivalent stiffness between the test results and theoretical predictions(β=0.7,γ=0.3)"

P/

MPa

t/a±15 mm±30 mm±45 mm±60 mm
D/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/K
402.842.95-0.042.612.82-0.071.921.95-0.021.511.54-0.02
253.033.13-0.032.883.18-0.092.102.31-0.091.601.67-0.04
503.113.27-0.052.932.540.152.222.000.111.671.640.02
752.953.15-0.062.742.95-0.071.922.07-0.771.831.610.13
1002.923.20-0.082.532.74-0.081.831.95-0.061.471.48-0.01
503.243.36-0.042.743.06-0.102.032.19-0.071.501.55-0.03
253.563.90-0.092.952.730.082.272.200.031.621.75-0.07
503.653.62-0.013.162.870.102.372.180.091.811.750.03
753.473.64-0.053.103.32-0.072.332.370.021.691.860.09
1003.333.80-0.122.873.30-0.132.492.52-0.011.581.720.08
603.483.87-0.103.133.61-0.132.782.92-0.052.252.55-0.12
253.663.320.103.283.110.052.893.14-0.082.432.400.01
503.783.540.073.473.310.053.102.750.132.612.350.11
753.593.77-0.053.213.61-0.113.012.920.032.312.38-0.03
1003.203.55-0.103.102.870.082.752.380.152.222.39-0.07

Table 4

Comparison of energy dissipation per cycle between the test results and theoretical predictions(β=0.7,γ=0.3)"

P/MPat/a±15 mm±30 mm±45 mm±60 mm
D/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/K
40263282-0.0713311440-0.0834953556-0.0259616064-0.02
25311327-0.0515361613-0.0538804104-0.0566796975-0.04
50419458-0.0815741720-0.0936914051-0.0961746996-0.12
75375404-0.0719912147-0.0743794737-0.0870417647-0.08
100322349-0.0814761603-0.0838034137-0.0865637170-0.08
503022770.0915651617-0.0338674091-0.0569557049-0.01
25281307-0.0810241119-0.0925692705-0.0552235647-0.08
50300307-0.02142014000.0134683522-0.0261086375-0.04
753272920.1215551640-0.0538773939-0.0268517396-0.07
100295303-0.0313911428-0.0336583684-0.0167927175-0.05
60337345-0.0213341365-0.0232303280-0.0260016263-0.04
25318345-0.0815341666-0.0841324493-0.0874838175-0.08
503843660.05147314050.05379337540.0168887276-0.05
753503240.08153414210.08397337440.0676378003-0.05
1003652580.02159511300.12415230440.0878368398-0.07

Table 5

Comparison of equivalent damping ration between the test results and theoretical predictions(β=0.7,γ=0.3)"

P/MPat/a±15 mm±30 mm±45 mm±60 mm
D /%K/%D-K)/K/%D/%K /%D-K)/K/%D /%K /%D-K)/K/%D /%K /%D-K)/K/%
406.786.80-0.299.029.010.1114.014.30-2.1017.4017.400.00
257.157.17-0.288.978.960.1114.314.002.1418.5018.500.00
508.368.37-0.1212.0012.000.0015.915.900.0018.6018.90-1.59
759.089.10-0.2212.9012.900.0017.918.00-0.5621.1021.000.48
1007.717.72-0.1310.3010.300.0016.716.70-0.0020.0021.40-6.54
506.596.84-3.657.518.32-9.7412.914.70-12.2018.3020.00-8.50
257.257.52-3.598.978.248.8612.711.609.4816.1014.3012.58
508.308.35-0.609.378.638.5714.713.707.3017.9016.107.53
758.707.8410.979.358.746.9813.113.100.0020.0018.600.61
1007.647.67-0.397.677.403.6411.911.503.4816.6016.500.00
606.306.35-0.796.326.68-5.398.248.81-6.4710.8310.830.00
257.347.340.007.187.170.1410.811.20-3.5713.6515.02-9.12
508.278.35-0.097.337.51-2.4011.210.704.6715.0414.652.66
757.518.31-9.636.956.950.0010.110.100.0014.0113.990.14
1007.167.18-0.286.956.950.0010.0710.070.0013.8013.81-0.07

Table 6

Arithmetic mean and standard deviation of equivalent stiffness from experimental and theoretical results(β=0.7,γ=0.3)"

统计量位移幅值/mm老化时间/h竖向荷载/MPa
±15±30±45±60077154231308456
均值/(kN·mm-1试验3.322.982.341.872.502.692.822.682.482.332.563.01
模拟3.483.092.391.952.702.752.652.802.702.412.693.05
标准差/(kN·mm-1试验0.300.260.430.380.660.690.690.650.640.570.730.48
模拟0.290.320.380.410.760.680.690.730.700.660.760.50

Table 7

Arithmetic mean and standard deviation of energy dissipation from experimental and theoretical results(β=0.7,γ=0.3)"

统计量位移幅值/mm老化时间/h竖向荷载/MPa
±15±30±45±60077154231308456
均值/kN·mm)试验329.91489.03731.16679.52886.82914.32974.33324.03187.33063.22891.53217.3
模拟329.71514.33789.47107.42969.13123.03135.83474.53223.33289.03013.83252.8
标准差/kN·mm)试验42.3201.1432.6701.22480.32535.92408.62719.22709.72418.32418.62703.5
模拟51.8251.1829.4780.12465.72724.12607.02923.22936.72604.12547.42908.6

Table 8

Arithmetic mean and standard deviation of equivalent damping from experimental and theoretical results(β=0.7,γ=0.3)"

统计量位移幅值/mm老化时间/h竖向荷载/MPa
±15±30±45±60077154231308456
均值/%试验7.68.712.816.59.811.112.312.611.413.311.49.5
模拟7.58.612.616.310.210.811.712.311.413.410.99.5
标准差/%试验0.801.892.802.913.683.904.044.884.454.714.012.85
模拟0.831.872.712.893.883.863.844.594.724.833.642.81
1 Ahmet T, Bayezid Ö. Seismic base isolation using low-cost scrap tire pads (STP)[J]. Materials and Structures, 2008, 41(5):891-908.
2 张广泰,陆东亮,魏飞来,等.热氧老化条件下废旧叠层轮胎隔震垫的力学性能[J].华南理工大学学报:自然科学版,2019,47(8):16-22.
Zhang Guang-tai,Lu Dong-liang,Wei Fei-lai,et al.Mechanial properties of scarp tire rubber pads based on thermal oxygen aging[J].Journal of South China University of Techology(Nature Science Edition),2019,47(8):16-22.
3 孟庆利,冯浩.铅芯废旧轮胎隔震垫(LRTP)力学性能试验研究[J].土木工程学报,2018,51(1):58-67.
Meng Qing-li,Feng Hao. The experimental study on mechnical behavior of Lead Recycle Tire Pads (LRTP)[J]. China Civil Engineering Journal, 2018,51(1):58-67.
4 张广泰,陆东亮,章金鹏,等.老化-荷载耦合下叠层轮胎隔震垫的竖向力学性能[J].材料导报,2019(18):3140-3146.
Zhang Guang-tai,Lu Dong-liang,Zhang Jin-peng,et al.Vertical mechanical properties of scrap tire rubber pads under aging-loading[J]. Materials Reports,2019(18): 3140-3146.
5 熊世树,周正华,王补林.铅芯橡胶隔震支座恢复力模型的分析方法[J].华中科技大学学报:城市科学版,2003(2):28-31.
Xiong Shi-shu,Zhou Zheng-hua,Wang Bu-lin. Analysis of hysteresis model of lead-rubber laminated bearing[J]. Journal of Wuhan Urban Construction Institute, 2003(2):28-31.
6 金建敏,周福霖,谭平.铅芯橡胶支座微分型恢复力模型屈服前刚度的研究[J].工程力学,2010,27(10):7-13.
Jin Jian-min,Zhou Fu-lin,Tan Ping. Study on pre-yield shear stiffness of differential restoring force model for lead rubber bearing[J]. Engineering Mechanics, 2010,27(10):7-13.
7 汪新明.橡胶隔震支座非线性建模及参数识别研究[D].南京:南京航空航天大学航空宇航学院,2018.
Wang Xin-ming. Research on nonlinear modeling and parameter identification of rubber isolation bearings[D]. Nanjing:College of Aerospace Engineering,Nanjing Aerospace University,2018.
8 Pan T C,Yang G.Nonlinar analysis of base-isolated MOOF structures[J].Proceedings of the 11th Word Conference on Earthquake Engineering, Mexico,1996:No.1534.
9 Robert J.Noninear rate dependent model of high damping rubber bearing[J]. Bulletion of Earthquake Engineering,2004, 8(1):397-403.
10 Koh CG,Kelly J M.A simple mechanical model for elastomeric bearings used in based isolation[J]. International Journal of Mechanical Sciences, 1998,30(12):933-943.
11 Kikuchi M,Yamamoto S,Aiken I D.An analytical model for lead-rubber bearing sunder large demations[J]. Proceedings of the 8th Pacific Conference on Eartuquake Engineering,Singpore, 2007:222.
12 Dall Asta A,Ragni L.Experimental tests analytical model of high damping rubber d isspating devices[J]. Engineering Structures,2006,28(13):1874-1884.
13 Bhuiyan A R,Okui Y,Mitamura H,et al.A rheology model of high damping rubber bearings for seismic analysis:Identification of nonlinear viscosity[J].International Journal of Solids and Structures,2009,46(7,8):1778-1792.
14 中国建筑标准设计研究所.建筑隔震橡胶支座:JG118—2000[M].北京:中国建筑工业出版社,2000.
15 中华人民共和国国家标准.公路桥梁板式橡胶支座第一部分:橡胶隔震支座试验方法[S].北京:中国标准出版社,2007.
[1] Guang-tai ZHANG,Jin-peng ZHANG,Ming-yang WANG,Dong-liang LU,Mei ZHANG. Seismic isolation performance of waste scrap tire pads under aging-loading coupling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 96-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!