Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1414-1419.doi: 10.13229/j.cnki.jdxbgxb20200204

Previous Articles    

Detection method of medical cell image generation based on conditional generative adversarial network

Xue-yun CHEN(),Tao XU,Xiao-qiao HUANG   

  1. School of Electrical Engineering,Guangxi University,Nanning 530004,China
  • Received:2020-04-01 Online:2021-07-01 Published:2021-07-14

Abstract:

The existing methods need a lot of labeled data as support in the detection, but the lack of data in the case of cell adhesion and occlusion is not conducive to the improvement of cell detection accuracy. In order to solve this problem, a cell image generation detection method based on condition generation antagonism network is proposed. Pix2pix network model is used to control the generation of cell image with adhesion occlusion, the loss function is extracted, pix2pix is used to realize image to image conversion, and regular term error control is used to generate network error. On this basis, the detection network is constructed, including the generation network structure, discrimination network structure and detection network structure. The target detection is carried out at the output of the generation network, so that the image generation and cell detection are completed in the same network. Experiments show that compared with the existing model, the designed method has a significant improvement in detection accuracy, reaching 90.2%, which can meet the needs of medical cell detection.

Key words: conditional generative adversarial network, image generation, target detection, discriminant network structure, loss function

CLC Number: 

  • TP391.4

Fig.1

Flow chart of LCGAN"

Fig.2

Diagram of network framework"

Fig.3

Structure of discriminator network"

Fig.4

Cell databases generated by different models"

Table 1

Comparison of quantitative results of PSNR, SSIM and IS"

方法名称迭代次数PSRNSSIMIS
Pix2pix50 00017.540.8430.79
LCGAN50 00020.870.9050.82

Fig.5

Cell databases checked by different models"

Table 2

Experimental comparison results of each detection method"

方法名称迭代次数召回率/%精确率/%准确率
BP+HOG10 00068.485.80.77
SSD10 00078.389.20.83
FCRN10 00090.391.20.894
LCGAN10 00091.291.70.902
1 万程,周鹏,吴陆辉,等.基于生成对抗网络的糖尿病视网膜病变眼底图像生成[J].中华实验眼科杂志,2019,37(8):613-618.
Wan Cheng, Zhou Peng, Wu Lu-hui, et al. Diabetic retinopathy fundus image generation based on generative adversarial networks[J]. Chinese Journal of Experimental Ophthalmology, 2019,37(8):613-618.
2 胡海洋,庄载雄,俞佳成,等.基于生成对抗网络的模糊工件角度检测[J].计算机集成制造系统,2019,25(8):1936-1945.
Hu Hai-yang, Zhuang Zai-xiong, Yu Jia-cheng, et al. Blurred workpiece angle detection method based on generative adversarial networks[J]. Computer Integrated Manufacturing Systems, 2019,25(8):1936-1945.
3 Imani Maryam. Hyperspectral anomaly detection using differential image[J]. IET Image Processing, 2018, 12(5):801-809.
4 苏健民,杨岚心.基于生成对抗网络的单帧遥感图像超分辨率[J].计算机工程与应用,2019,55(12):202-207, 214.
Su Jian-min, Yang Lan-xin. Super resolution of single frame remote sensing image based on generative adversarial nets[J]. Computer Engineering and Applications, 2019,55(12):202-207, 214.
5 王海鸥,刘慧,郭强,等.面向医学图像分割的超像素U-Net网络设计[J].计算机辅助设计与图形学学报,2019,31(6):1007-1017.
Wang Hai-ou, Liu Hui, Guo Qiang, et al. Design of superpiexl U-Net network for medical image segmentation[J]. Journal of Computer-Aided Design and Computer Graphics, 2019,31(6):1007-1017.
6 Goodfellow I,Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]∥Advances in Neural Information Processing Systems, Barcelona Spain, 2014: 2672-2680
7 Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015
8 Mirza M, Osindero S. Conditional generative adversarial nets[J]. Computer Science, 2014:2672-2680.
9 肖进胜,申梦瑶,雷俊锋,等.基于生成对抗网络的雾霾场景图像转换算法[J].计算机学报,2020,43(1):165-176.
Xiao Jin-sheng, Shen Meng-yao, Lei Jun-feng, et al. Image conversion algorithm for haze scene based on generative adversarial networks[J]. Chinese Journal of Computers, 2020,43(1):165-176
10 Zhao H, Gallo O, Frosio I, et al. Loss functions for image restoration with neural networks[J]. Computational Imaging, IEEE Transactions on, 2017, 3(1):47-57.
11 霍其润,李建武,陆耀,等.基于变分的CT图像环形伪影校正[J].自动化学报,2019,45(9):1713-1726.
Huo Qi-run, Li Jian-wu, Lu Yao, et al. Variation-based ring artifact correction in CT images[J]. Acta Automatica Sinica, 2019,45(9):1713-1726.
12 于剑楠,李辉勇,李青锋,等.DM+:一种融合数字编码的可扫描图像生成技术[J].计算机学报,2019,42(9):2035-2048.
Yu Jian-nan, Li Hui-yong, Li Qing-feng, et al. DM+: a scanning image generation technique based on digital coding[J]. Chinese Journal of Computers, 2019,42(9):2035-2048.
13 张凯,李军辉,周国栋.基于枢轴语言的图像描述生成研究[J].中文信息学报,2019,33(3):110-117.
Zhang Kai, Li Jun-hui, Zhou Guo-dong. Image caption via pivot language[J]. Journal of Chinese Information Processing, 2019,33(3):110-117.
14 刘如飞,朱健,杨正清,等.一种针对路面损坏识别的点云特征图像生成方法[J].遥感信息,2019,34(4):22-28.
Liu Ru-fei, Zhu Jian, Yang Zheng-qing, et al. A point cloud feature image generation method for pavement damage recognition[J]. Remote Sensing Information, 2019,34(4):22-28.
[1] De-lun PAN,Jun JI,Yue-jin ZHANG. Dynamic object detection method of video surveillance based on motion vector space coding [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1370-1374.
[2] Hong-wei ZHAO,Peng WANG,Li-li FAN,Huang-shui HU,Ping-ping LIU. Similarity retention instance retrieval method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2045-2050.
[3] JIANG Hong, LI Yin, LYU Wei. Linear shrinkage-based blind target detection for MIMO radar with large arrys [J]. 吉林大学学报(工学版), 2017, 47(3): 973-980.
[4] QIN Chuan-dong, LIU San-yang. Tumor gene selection based on double regularized support vector machine [J]. 吉林大学学报(工学版), 2013, 43(01): 192-197.
[5] SUN Jin-Qiu, ZHANG Yan-Ning, ZHOU Jun, JIANG Lei. Small and dim target detection based on selective visual attention mechanism and curve detection method [J]. 吉林大学学报(工学版), 2010, 40(06): 1683-1687.
[6] Sun Hua-dong,Su Fu-lin,Gao Jian-jun,Zhang Ye . Parameter estimation of SAR moving target
based on DPCAFrFT algorithm
[J]. 吉林大学学报(工学版), 2008, 38(02): 476-0482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!