Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 310-317.doi: 10.13229/j.cnki.jdxbgxb20211207
Xiu-fang WANG(),Shuang SUN,Chun-yang DING
CLC Number:
1 | Lee C Y, Cheng Y H. Motor fault detection using wavelet transform and improved PSO-BP neural network[J]. Processes, 2020, 8(10): 1322. |
2 | Pandarakone S E, Mizuno Y, Nakamura H. Evaluating the progression and orientation of scratches on outer-raceway bearing using a pattern recognition method[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1307-1314. |
3 | Cao H, Fan F, Zhou K, et al. Wheel-bearing fault diagnosis of trains using empirical wavelet transform [J]. Measurement, 2016, 82: 439-449. |
4 | Nikolaou N G, Antoniadis I A. Rolling element bearing fault diagnosis using wavelet packets[J]. NDT & E International, 2009, 35(3): 197-205. |
5 | 武哲, 杨绍普, 刘永强. 基于多元经验模态分解的旋转机械早期故障诊断方法[J]. 仪器仪表学报, 2016, 37(2): 241-248. |
Wu Zhe, Yang Shao-pu, Liu Yong-qiang. Early fault diagnosis method of rotating machinery based on multiple empirical mode decomposition[J]. Journal of Instrumentation, 2016, 37(2): 241-248. | |
6 | Dragomiretskiy K, Zosso D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
7 | 姚德臣, 杨建伟, 程晓卿, 等. 基于多尺度本征模态排列熵和SA-SVM的轴承故障诊断研究[J]. 机械工程学报, 2018, 54(9): 168-176. |
Yao De-chen, Yang Jian-wei, Cheng Xiao-qing, et al. Railway rolling bearing fault diagnosis based on muti-scale IMF permutation entropy and SA-SVM classifier[J]. Journal of Mechanical Engineering, 2018, 54(9): 168-176. | |
8 | Krishnakumari A, Elayaperumal A, Saravanan M. et al. Fault diagnostics of spur gear using decision tree and fuzzy classifier[J]. Int J Adv Manuf Technol,2017, 89: 3487-3494. |
9 | Chen S Z, Yang R, Zhong M Y. Graph-based semi-supervised random forest for rotating machinery gearbox fault diagnosis[J]. Control Engineering Practice, 2021, 117: 104952. |
10 | Yang Y, Yu D, Cheng J. A roller hearing fault diagnosis method baesd on EMD energy entropy and ANN[J]. Journal of Sound and Vibration, 2006, 294(1): 269-277 |
11 | Li H W, Zhao X P, Wu J X, et al. Motor fault diagnosis based on short-time fourier transform and convolutional neural network[J]. Chinese Journal of Mechanical Engineering, 2017, 30(6): 1357-1368. |
12 | Li G Q, Deng C, Wu J, et al. Sensor data-driven bearing fault diagnosis based on deep convolutional neural networks and s-transform[J]. Sensors, 2019, 19(12): 2750-2764. |
13 | Ding X X, He Q B. Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis[J]. IEEE Transactions on InStrumentation and Measurement, 2017, 66(8): 1926-1935. |
14 | Xia M, Li T, Xu L, et al. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 101-110. |
15 | 吴晨芳, 杨世锡, 黄海舟, 等. 一种基于改进的LeNet-5模型滚动轴承故障诊断方法研究[J]. 振动与冲击, 2021, 40(12): 55-61. |
Wu Chen-fang, Yang Shi-xi, Huang Hai-zhou, et al. Research on a fault diagnosis method of rolling bearing based on improved lenet-5 model[J]. Vibration and Shock, 2021,40(12): 55-61. | |
16 | 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143. |
Qu Jian-ling, Yu Lu, Yuan Tao, et al. Adaptive fault diagnosis algorithm of rolling bearing based on one-dimensional convolutional neural network[J]. Journal of Instrumentation, 2018, 39(7): 134-143. | |
17 | 宫文峰, 陈辉, 张美玲, 等. 基于深度学习的电机轴承微小故障智能诊断方法[J]. 仪器仪表学报, 2020, 41(1): 195-205. |
Gong Wen-feng, Chen Hui, Zhang Mei-ling, et al. Intelligent fault diagnosis method of motor bearing based on deep learning[J]. Journal of Instrumentation, 2020, 41(1): 195-205. | |
18 | Li X Y, Li J L, Zhao C Y, et al. Gear pitting fault diagnosis with mixed operating conditions based on adaptive 1D separable convolution with residual connection[J]. Mechanical Systems and Signal Processing, 2020, 142: 106740. |
19 |
邓飞跃, 吕浩洋, 顾晓辉, 等. 基于轻量化神经网络Shuffle-SENet的高速动车组轴箱轴承故障诊断方法[J]. 吉林大学学报: 工学版. DOI: 10.13229/j.cnki.jdxbgxb20210644.
doi: 10.13229/j.cnki.jdxbgxb20210644 |
Deng Fei-yue, Hao-yang Lyu, Gu Xiao-hui, et al. High-speed locomotive set axle box bearing troubleshooting method based on lightweight neural network Shuffle-SENet[J]. Journal of Jilin University(Engineering and Technology Edition). DOI: 10.13229/j.cnki.jdxbgxb20210644.
doi: 10.13229/j.cnki.jdxbgxb20210644 |
|
20 | Lu S, Qian G, He Q, et al. In situ motor fault diagnosis using enhanced convolutional neural network in an embedded system[J]. IEEE Sensors Journal, 2020, 20(15): 8287-8296. |
21 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778. |
22 | 赵敬娇, 赵志宏, 杨绍普. 基于残差连接和1D-CNN的滚动轴承故障诊断研究[J]. 振动与冲击, 2021, 40(10): 1-6. |
Zhao Jing-jiao, Zhao Zhi-hong, Yang Shao-pu. Research on fault diagnosis of rolling bearing based on residual connection and 1D-CNN[J]. Vibration and Shock, 2021, 40(10): 1-6. | |
23 | 董绍江, 裴雪武, 吴文亮, 等. 改进抗干扰CNN的变负载滚动轴承损伤程度识别[J]. 振动,测试与诊断, 2021, 41(4): 715-722, 831. |
Dong Shao-jiang, Pei Xue-wu, Wu Wen-liang, et al. Identification of damage degree of variable load rolling bearing based on improved anti-interference CNN[J]. Vibration, Test and Diagnosis, 2021, 41(4): 715-722, 831. | |
24 | Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]∥International Conference on International Conference on Machine Learning, Miami, 2015: 448-456. |
25 | Lin M, Chen Q, Yan S C. Network in network[C]∥International Conference on Learning Representations, Vancouver, Canada, 2014: 1-10. |
[1] | SONG Da-feng, LI Guang-han, ZHANG Lin, PAN Bing, ZENG Xiao-hua, PENG Yu-jun, WANG Qing-nian. Application of fuzzy mathematics in fault diagnosis of motor of hybrid vehicle [J]. 吉林大学学报(工学版), 2016, 46(2): 354-359. |
|