Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 310-317.doi: 10.13229/j.cnki.jdxbgxb20211207

Previous Articles    

Real⁃time detection of embedded bearing faults based on 1D⁃RSCNN

Xiu-fang WANG(),Shuang SUN,Chun-yang DING   

  1. School of Electrical Information Engineering,Northeast Petroleum University,Daqing 163318,China
  • Received:2021-11-15 Online:2022-02-01 Published:2022-02-17

Abstract:

Aiming at the problems of traditional fault diagnosis model with many parameters, long training, long detection time, poor noise resistance and not suitable for online real-time diagnosis, the paper puts forward the rolling bearing fault diagnosis method based on residual connection and one-dimensional separable convolution(1D-RSCNN), and constructs an embedded system consisting of Jetson Nano and signal acquisition circuit. The model dimensions are compressed with 1D separable convolution and global average pooling to improve the computational efficiency of traditional convolution, and wide convolution cores, Dropout is introduced into the residual network to improve the tolerance of noise through. The test results show that the diagnostic accuracy of this method is as high as 99.92%. Compared with other models, the diagnosis accuracy is high, the real-time is good, the anti-jamming ability is strong, and it is suitable for the real-time detection of motor bearing fault.

Key words: motor faults, embedded systems, 1D separable convolution, residual connections, Jetson Nano

CLC Number: 

  • TP277

Fig.1

1D-RSCNN model structure"

Fig.2

Residual module"

Fig.3

Improved residual module"

Fig.4

Comparison of traditional one-dimensional convolutions with one-dimensional separable convolutions"

Fig.5

A structure diagram of the full-connected and global average pool layers"

Fig.6

Bearing fault test bench"

Fig.7

Bearing failure"

Fig.8

Hardware structure and peripheral interfaces"

Table 1

Experimental dataset"

故障类型样本长度训练样本测试样本标签
滚珠故障(RU)10247001000
外圈故障(BORF)10247001001
内圈故障(BIRF)10247001002
正常(Healthy)10247001003

Fig.9

Four types of time domain signals"

Table 2

1D-RS CNN model parameters"

层结构数目×尺寸×步长输出维度参数量
输入层-1024×10
卷积层16×32×8128×16528
残差块116×1×1128×16320
32×3×1128×32592
32×3×1128×32592
残差块232×1×1128×321152
64×3×1128×642208
64×3×1128×642208
全局平均池化-64×10
Softmax层44×1260

Fig.10

Training process curve"

Fig.11

Embedded systems identify different motor faults"

Table 3

Comparison of test results for different models"

算法准确率/%模型参数训练时间/s测试时间/s
1D-RSCNN99.927 8606750.85
1D CNN99.6886 9208681.30
ResNets99.8141 9907821.06
文献[20100.00206 1489162.54

Fig.12

Recognition accuracy in different signal-to-noise ratio scenarios"

1 Lee C Y, Cheng Y H. Motor fault detection using wavelet transform and improved PSO-BP neural network[J]. Processes, 2020, 8(10): 1322.
2 Pandarakone S E, Mizuno Y, Nakamura H. Evaluating the progression and orientation of scratches on outer-raceway bearing using a pattern recognition method[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1307-1314.
3 Cao H, Fan F, Zhou K, et al. Wheel-bearing fault diagnosis of trains using empirical wavelet transform [J]. Measurement, 2016, 82: 439-449.
4 Nikolaou N G, Antoniadis I A. Rolling element bearing fault diagnosis using wavelet packets[J]. NDT & E International, 2009, 35(3): 197-205.
5 武哲, 杨绍普, 刘永强. 基于多元经验模态分解的旋转机械早期故障诊断方法[J]. 仪器仪表学报, 2016, 37(2): 241-248.
Wu Zhe, Yang Shao-pu, Liu Yong-qiang. Early fault diagnosis method of rotating machinery based on multiple empirical mode decomposition[J]. Journal of Instrumentation, 2016, 37(2): 241-248.
6 Dragomiretskiy K, Zosso D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
7 姚德臣, 杨建伟, 程晓卿, 等. 基于多尺度本征模态排列熵和SA-SVM的轴承故障诊断研究[J]. 机械工程学报, 2018, 54(9): 168-176.
Yao De-chen, Yang Jian-wei, Cheng Xiao-qing, et al. Railway rolling bearing fault diagnosis based on muti-scale IMF permutation entropy and SA-SVM classifier[J]. Journal of Mechanical Engineering, 2018, 54(9): 168-176.
8 Krishnakumari A, Elayaperumal A, Saravanan M. et al. Fault diagnostics of spur gear using decision tree and fuzzy classifier[J]. Int J Adv Manuf Technol,2017, 89: 3487-3494.
9 Chen S Z, Yang R, Zhong M Y. Graph-based semi-supervised random forest for rotating machinery gearbox fault diagnosis[J]. Control Engineering Practice, 2021, 117: 104952.
10 Yang Y, Yu D, Cheng J. A roller hearing fault diagnosis method baesd on EMD energy entropy and ANN[J]. Journal of Sound and Vibration, 2006, 294(1): 269-277
11 Li H W, Zhao X P, Wu J X, et al. Motor fault diagnosis based on short-time fourier transform and convolutional neural network[J]. Chinese Journal of Mechanical Engineering, 2017, 30(6): 1357-1368.
12 Li G Q, Deng C, Wu J, et al. Sensor data-driven bearing fault diagnosis based on deep convolutional neural networks and s-transform[J]. Sensors, 2019, 19(12): 2750-2764.
13 Ding X X, He Q B. Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis[J]. IEEE Transactions on InStrumentation and Measurement, 2017, 66(8): 1926-1935.
14 Xia M, Li T, Xu L, et al. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 101-110.
15 吴晨芳, 杨世锡, 黄海舟, 等. 一种基于改进的LeNet-5模型滚动轴承故障诊断方法研究[J]. 振动与冲击, 2021, 40(12): 55-61.
Wu Chen-fang, Yang Shi-xi, Huang Hai-zhou, et al. Research on a fault diagnosis method of rolling bearing based on improved lenet-5 model[J]. Vibration and Shock, 2021,40(12): 55-61.
16 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143.
Qu Jian-ling, Yu Lu, Yuan Tao, et al. Adaptive fault diagnosis algorithm of rolling bearing based on one-dimensional convolutional neural network[J]. Journal of Instrumentation, 2018, 39(7): 134-143.
17 宫文峰, 陈辉, 张美玲, 等. 基于深度学习的电机轴承微小故障智能诊断方法[J]. 仪器仪表学报, 2020, 41(1): 195-205.
Gong Wen-feng, Chen Hui, Zhang Mei-ling, et al. Intelligent fault diagnosis method of motor bearing based on deep learning[J]. Journal of Instrumentation, 2020, 41(1): 195-205.
18 Li X Y, Li J L, Zhao C Y, et al. Gear pitting fault diagnosis with mixed operating conditions based on adaptive 1D separable convolution with residual connection[J]. Mechanical Systems and Signal Processing, 2020, 142: 106740.
19 邓飞跃, 吕浩洋, 顾晓辉, 等. 基于轻量化神经网络Shuffle-SENet的高速动车组轴箱轴承故障诊断方法[J]. 吉林大学学报: 工学版. DOI: 10.13229/j.cnki.jdxbgxb20210644.
doi: 10.13229/j.cnki.jdxbgxb20210644
Deng Fei-yue, Hao-yang Lyu, Gu Xiao-hui, et al. High-speed locomotive set axle box bearing troubleshooting method based on lightweight neural network Shuffle-SENet[J]. Journal of Jilin University(Engineering and Technology Edition). DOI: 10.13229/j.cnki.jdxbgxb20210644.
doi: 10.13229/j.cnki.jdxbgxb20210644
20 Lu S, Qian G, He Q, et al. In situ motor fault diagnosis using enhanced convolutional neural network in an embedded system[J]. IEEE Sensors Journal, 2020, 20(15): 8287-8296.
21 He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778.
22 赵敬娇, 赵志宏, 杨绍普. 基于残差连接和1D-CNN的滚动轴承故障诊断研究[J]. 振动与冲击, 2021, 40(10): 1-6.
Zhao Jing-jiao, Zhao Zhi-hong, Yang Shao-pu. Research on fault diagnosis of rolling bearing based on residual connection and 1D-CNN[J]. Vibration and Shock, 2021, 40(10): 1-6.
23 董绍江, 裴雪武, 吴文亮, 等. 改进抗干扰CNN的变负载滚动轴承损伤程度识别[J]. 振动,测试与诊断, 2021, 41(4): 715-722, 831.
Dong Shao-jiang, Pei Xue-wu, Wu Wen-liang, et al. Identification of damage degree of variable load rolling bearing based on improved anti-interference CNN[J]. Vibration, Test and Diagnosis, 2021, 41(4): 715-722, 831.
24 Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]∥International Conference on International Conference on Machine Learning, Miami, 2015: 448-456.
25 Lin M, Chen Q, Yan S C. Network in network[C]∥International Conference on Learning Representations, Vancouver, Canada, 2014: 1-10.
[1] SONG Da-feng, LI Guang-han, ZHANG Lin, PAN Bing, ZENG Xiao-hua, PENG Yu-jun, WANG Qing-nian. Application of fuzzy mathematics in fault diagnosis of motor of hybrid vehicle [J]. 吉林大学学报(工学版), 2016, 46(2): 354-359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!