Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 296-309.doi: 10.13229/j.cnki.jdxbgxb20211031

Previous Articles    

Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM

Xiao⁃lei CHEN1,2,3(),Yong⁃feng SUN1,Ce LI1,2,3,Dong⁃mei LIN1,2,3   

  1. 1.College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China
    2.Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou University of Technology,Lanzhou ;730050
    3.National Demonstration Center for Experimental Electrical and Control Engineering Education,Lanzhou University of Technology,Lanzhou 730050,China
  • Received:2021-10-09 Online:2022-02-01 Published:2022-02-17

Abstract:

Aiming at the problem of low accuracy and unstable performance of the fault diagnosis model of rolling bearing in noise environment conditions, This paper proposes a stable anti?noise fault diagnosis neural network SAFDNN model. The model uses the original vibration data signal as input. First, the CNN is used to extract the characteristics of the data signal, and then the BiLSTM is used to fully extract the sequence characteristics of the data signal, and then the attention mechanism is added for feature fusion and automatically pay attention to the relevant information of each data signal, improving the diagnostic performance of the model, and finally performing feature classification through the fully connected layer and Softmax layer. The experimental results show that SAFDNN can maintain a higher fault recognition accuracy and better stability of the diagnosis effect under the condition of adding additional noise with different signal?to?noise ratios.

Key words: fault diagnosis, stability anti?noise, rolling bearing, neural network, feature extraction, attention mechanism

CLC Number: 

  • TP277

Fig.1

SAFDNN model structure framework"

Fig.2

Visualization of ten types of fault signal"

Table 1

Data collection information"

负载转速/(r·min-1每转采集的数据个数
0.746 kW(1 hp)1772406
1.492 kW(2 hp)1750411
2.238 kW(3 hp)1730416

Table 2

CWRU data set details after data enhancement"

数据集位置BallInner RaceOuter RaceNormal
标签0123456789
直径(inch)0.0070.0140.0210.0070.0140.0210.0070.0140.0210

A

0.746 kW(1 hp)

训练集360360360360360360360360360360
验证集120120120120120120120120120120
测试集120120120120120120120120120120

B

1.492 kW(2 hp)

训练集360360360360360360360360360360
验证集120120120120120120120120120120
测试集120120120120120120120120120120

C

2.238 kW(3 hp)

训练集360360360360360360360360360360
验证集120120120120120120120120120120
测试集120120120120120120120120120120

Fig.3

BiLSTM structure"

Table 3

SAFDNN network structure parameters"

编号网络层内核大小步长神经元数输出大小
1输入层???800×1
2卷积164×1832100×32
3池化12×123250×32
4卷积23×116450×64
5池化22×126425×64
6BiLSTM??3225×64
7注意力模块??100100×1
8全连接??3232×1
9Softmax??1010×1

Fig.4

Visualization of the original bearing ball fault signal and the added SNR=-4 dB signal"

Table 4

Test results of different batch sizes under different SNR conditions (%)"

batch_sizeSNR
-10-8-6-4-20246810
6476.57±1.4284.56±0.8991.37±0.9494.44±0.8796.22±0.4797.28±0.6498.23±0.4198.35±0.3198.59±0.5398.59±0.4198.75±0.38
12880.18±1.2485.95±1.6791.51±0.9194.83±0.5896.85±0.6698.04±0.2998.42±0.3298.42±0.2798.59±0.3398.71±0.5898.86±0.36
20080.36±1.2887.32±1.0491.78±0.7195.36±0.5697.28±0.4198.17±0.3598.75±0.2799.03±0.2199.03±0.2698.66±0.2699.22±0.29
25679.84±1.6386.88±1.9792.74±0.7995.81±0.7197.23±0.5397.95±0.4198.11±0.6198.33±0.6498.42±0.4598.65±0.3398.64±0.36

Fig.5

The change curve of accuracy and loss of validation set with the addition of SNR=-4 dB to data sets A, B and C"

Fig.6

Under the condition of SNR=-4dB, different data sets test confusion matrix"

Fig.7

Under different noise conditions, the test results of different models on each data set"

Table 5

Comparison of the stability of different model test results (%) under different SNR conditions of data set A"

模型SNR
-10-8-6-4-20246810
SAFDNN81.89±1.3486.89±1.0893.28±0.8395.52±0.5397.65±0.3798.14±0.3698.55±0.2198.90±0.1999.14±0.2499.44±0.2299.75±0.15
CNN+BiLSTM80.35±1.5385.88±1.0892.74±0.6795.28±0.7296.67±0.5797.53±0.5198.43±0.4498.61±0.4398.83±0.3798.97±0.3199.29±0.20
WDCNN75.93±2.9285.75±1.5991.21±1.4394.92±0.9296.57±0.7297.43±0.7197.88±0.5898.01±0.4198.26±0.6198.64±0.3398.86±0.30
TICNN76.17±3.5782.08±3.1689.76±2.9893.82±1.7195.08±1.4296.75±1.2997.36±1.2297.61±0.8398.27±0.6398.65±0.5198.88±0.25
CNN+Attention68.66±1.9474.52±1.6079.27±1.8883.96±1.1187.57±0.9390.33±1.2892.82±0.6293.69±1.2895.08±0.5195.54±0.7396.47±0.54
AAnNet59.90±5.5367.64±4.4075.71±2.5181.49±2.9488.22±2.1595.44±1.7796.68±1.4397.39±0.9498.33±0.6998.73±0.7598.87±0.32

Table 6

Comparison of the stability of different model test results (%) under different SNR conditions of data set B"

模型SNR
-10-8-6-4-20246810
SAFDNN86.00±1.4391.94±0.7096.23±0.4998.71±0.2899.42±0.2799.82±0.0999.90±0.0999.91±0.0699.94±0.0699.93±0.0499.95±0.04
CNN+BiLSTM84.63±1.4290.97±1.0595.94±0.6698.71±0.4899.22±0.4199.64±0.3399.83±0.1299.86±0.1499.91±0.0699.92±0.1099.85±0.12
WDCNN75.75±3.2785.54±2.1191.92±1.0896.59±0.8198.33±0.4198.98±0.6699.64±0.2699.40±0.5699.83±0.1099.74±0.1899.87±0.11
TICNN80.28±3.4785.59±4.3491.39±3.5996.96±1.2599.14±0.3598.97±0.9199.80±0.1599.84±0.1199.50±0.6799.68±0.4199.88±0.10
CNN+Attention70.33±1.8478.05±2.5084.73±2.0190.19±1.0492.42±1.5595.36±0.9496.98±0.5097.50±0.3597.83±0.7998.49±0.2898.34±0.44
AAnNet63.41±4.7871.61±3.4680.91±2.8790.79±2.3395.83±1.2096.53±1.6897.04±0.9997.76±0.6798.34±0.5199.02±0.5199.21±0.42

Table 7

Comparison of the stability of different model test results (%) under different SNR conditions of data set C"

模型SNR
-10-8-6-4-20246810
SAFDNN87.27±1.0192.05±0.5596.58±0.4098.17±0.3699.38±0.2699.67±0.2099.67±0.1199.78±0.0799.89±0.0599.95±0.0499.93±0.07
CNN+BiLSTM85.95±1.2390.65±0.7896.43±0.4898.58±0.4399.35±0.3799.56±0.2899.65±0.1999.69±0.1499.77±0.0999.80±0.1499.89±0.07
WDCNN82.88±3.3188.33±2.2193.91±1.7096.03±1.0598.00±0.5398.60±0.8199.32±0.3299.33±0.2199.66±0.1699.71±0.1299.68±0.18
TICNN84.58±3.5789.22±1.7994.72±1.4397.00±1.1097.17±1.5399.10±0.4298.72±1.2499.25±0.5799.28±0.5999.56±0.2799.71±0.15
CNN+Attention74.91±2.2078.15±2.0583.00±1.8388.07±1.2691.99±1.4593.96±1.0095.60±0.5497.15±0.5697.80±0.3698.35±0.3598.27±0.25
AAnNet63.68±3.3169.61±2.1476.71±1.7782.45±1.5190.26±1.1195.74±0.8696.89±0.6897.63±0.5898.41±0.3398.88±0.2999.33±0.30

Fig.8

Under the condition of SNR=-4dB, different model validation accuracy and validation loss value change curves"

Table 8

Usage of different modules in ablation experiment"

编号ELU+BiLSTMAttentionData Enhancement
1×××
2××
3××
4××
5×
6×
7×
8

Table 9

Comparison of stability of test results (%) of ablation experiments under different noise conditions"

编号SNR/dB
-10-8-6-4-20246810
134.67±6.4545.75±6.1747.93±5.6160.56±4.9164.37±4.5368.54±3.5973.41±3.1580.73±2.9587.85±2.5789.41±2.4393.37±1.86
268.47±3.4777.05±2.9783.47±2.7388.53±2.5393.10±1.9595.87±1.8297.34±1.5798.61±1.5298.59±1.3799.15±1.2999.35±1.21
345.59±5.1756.73±4.3158.14±4.0565.96±3.7572.16±3.4978.63±3.1582.51±2.5487.58±2.4792.36±1.9595.25±1.3797.31±1.35
467.37±2.3578.41±2.8785.35±2.4390.54±1.9694.07±1.6896.18±1.5297.39±1.3698.67±1.2398.73±1.1998.74±1.2598.80±1.13
572.28±2.0578.75±1.3885.98±1.2894.83±1.1595.69±1.6295.77±1.4897.51±1.0497.89±0.6698.44±0.4799.49±0.3999.29±0.40
684.63±1.4290.97±1.0595.94±0.6698.71±0.4899.22±0.4199.64±0.3399.83±0.1299.86±0.1499.91±0.0699.92±0.1099.85±0.12
771.59±2.1780.71±1.7785.04±1.5490.79±1.7594.36±1.3696.34±1.0997.60±0.9798.77±0.8199.07±0.5999.53±0.4699.45±0.42
886.00±1.4391.94±0.7096.23±0.4998.71±0.2899.42±0.2799.82±0.0999.90±0.0999.91±0.0699.94±0.0699.93±0.0499.95±0.04

Table 10

Distribution of cross?training, validation and test data sets"

编号训练集验证集测试集
1ABC
2ACB
3BAC
4BCA
5CAB
6CBA

Fig.9

Comparison of test results of different models under different load conditions"

Table 11

Comparison of stability of different model test results (%) under different load conditions"

模型ABCACBBACBCACABCBA
SAFDNN98.28±0.9599.91±0.0599.39±0.5497.61±0.3391.43±2.5587.27±1.56
CNN+BiLSTM98.47±1.0899.93±0.0799.27±0.7497.37±0.5290.10±2.7081.24±1.49
WDCNN95.93±1.1498.75±1.0094.46±2.3996.41±0.8984.83±3.7378.26±2.33
TICNN93.19±3.2399.46±0.4593.45±1.5893.83±1.5482.38±3.1076.70±1.93
AAnNet72.99±2.1979.74±2.9690.78±1.7784.25±2.5866.59±4.0662.13±3.78

Fig.10

Comparison of test results of different models under different load conditions when SNR=-4 dB"

Table 12

Comparison of stability of test results of different models under different load conditions when SNR=-4 dB"

模型ABCACBBACBCACABCBA
SAFDNN95.74±0.5397.22±0.5296.13±1.1292.18±0.9796.86±1.1693.05±0.68
CNN+BiLSTM95.13±0.7297.15±0.5996.18±0.7892.42±1.4596.94±0.8293.02±1.30
WDCNN92.58±1.4993.66±1.2093.14±2.0590.87±1.2092.06±1.9392.04±1.68
TICNN93.70±1.4294.15±2.6193.80±1.2990.37±1.1895.26±1.8190.58±2.20
AAnNet59.27±2.3562.81±2.0163.69±2.6164.58±1.9650.01±3.3156.21±3.23
1 Liu R, Yang B, Zio E, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical Systems & Signal Processing, 2018, 108:33⁃47.
2 Wang B, Lei Y, Li N, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020,69(1):401⁃412.
3 Ahmad W, Khan S A, Kim J M. A hybrid prognostics technique for rolling element bearings using adaptive predictive models[J]. IEEE Transactions on Industrial Electronics, 2018,65(2):1577⁃1584.
4 Wen L, Li X, Gao L, et al. A new convolutional neural network based data⁃driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018,65(7):5990⁃5998.
5 Li Y, Ding K, He G, et al. Non⁃stationary vibration feature extraction method based on sparse decomposition and order tracking for gearbox fault diagnosis[J]. Measurement, 2018, 124:453⁃469.
6 Wu C, Jiang P, Ding C, et al. Intelligent fault diagnosis of rotating machinery based on one⁃dimensional convolutional neural network[J]. Computers in Industry, 2019, 108:53⁃61.
7 解晓婷,李少波,杨观赐,等.基于FFT与CS⁃SVM的滚动轴承故障诊断[J].组合机床与自动化加工技术,2019,542(4):90⁃94.
Xie Xiao⁃ting, Li Shao⁃bo, Yang Guan⁃ci, et al. Fault diagnosis of rolling bearing based on FFT and CS⁃SVM [J]. Modular Machine Tool and Automatic Processing Technology, 2019, 542(4):90⁃94.
8 陈彦龙,张培林,李兵,徐超,王国德.基于DCT和GA-SVM的轴承故障诊断[J].计算机工程,2012,38(19):247-249, 253.
Chen Yan-long, Zhang Pei-lin, Li Bing, Xu Chao, Wang Guo-de.Bearing fault diagnosis based on DCT and GA-SVM[J].Computer Engineering,2012,38(19):247-249, 253.
9 Lee C Y, Cheng Y H. Motor fault detection using wavelet transform and improved PSO⁃BP neural network[J]. Processes, 2020, 8(10):1322.
10 Zhu H, Wang X, Yang Z, et al. Sparse representation based on adaptive multiscale features for robust machinery fault diagnosis[J]. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2015, 229(12):2303⁃2313.
11 Zhao H, Guo S, Gao D. Fault feature extraction of bearing faults based on singular value decomposition and variational modal decomposition[J]. Journal of Vibration and Shock, 2016,35(22):183⁃188.
12 王进花,胡佳伟,曹洁,黄涛.基于自适应VMD和IELM的滚动轴承多故障诊断[J/OL].吉林大学学报:工学版:1-10.[2022-01-21].DOI:10.13229/j.cnki.jdxbgxb20200856.
doi: 10.13229/j.cnki.jdxbgxb20200856
Wang Jin-hua, Hu Jia-wei, Cao Jie, Huang Tao.Multiple fault diagnosis of rolling bearing based on adaptive VMD and IELM[J/OL].Journal of Jilin University(Engineering Edition):1-10.[2022-01-21].DOI:10.13229/j.cnki.jdxbgxb20200856.
doi: 10.13229/j.cnki.jdxbgxb20200856
13 王普,李天垚,高学金,等. 分层自适应小波阈值轴承故障信号降噪方法[J]. 振动工程学报, 2019, 32(3): 548⁃556.
Wang Pu, Li Tian⁃yao, Gao Xue⁃jin, et al. Hierarchical adaptive wavelet threshold denoising method for bearing fault signals[J]. Chinese Journal of Vibration Engineering, 2019, 32(03): 548⁃556.
14 朱军,闵祥敏,孔凡让,等. 基于分量筛选奇异值分解的滚动轴承故障诊断方法研究[J].振动与冲击, 2015, 34(20): 61⁃65.
Zhu Jun, Min Xiang⁃min, Kong Fan⁃rang, et al. Research on fault diagnosis method of rolling bearing based on component screening singular value decomposition[J]. Vibration and Shock, 2015, 34(20): 61⁃65.
15 Bakir T, Boussaid B, Hamdaoui R, et al. Fault detection in wind turbine system using wavelet transform: multi⁃resolution analysis[C]//International Multi conference on Systems, IEEE, 2015: 1⁃6.
16 Wang H, Xu J, Yan R, et al. Intelligent bearing fault diagnosis using multi⁃head attention⁃based CNN[J]. Procedia Manufacturing, 2020, 49: 112⁃118.
17 曲建岭,余路,袁涛,等. 基于卷积神经网络的层级化智能故障诊断算法[J]. 控制与决策, 2019, 34(12): 2619⁃2626.
Qu Jian⁃ling, Yu Lu, Yuan Tao, et al. A hierarchical intelligent fault diagnosis algorithm based on convolutional neural network[J]. Control and Decision, 2019, 34(12): 2619⁃2626.
18 Chen X, Zhang B, Gao D. Bearing fault diagnosis base on multi⁃scale CNN and LSTM model[J]. Journal of Intelligent Manufacturing, 2021, 32: 971⁃987.
19 张根保,李浩,冉琰,等. 一种用于轴承故障诊断的迁移学习模型[J].吉林大学学报:工学版, 2020, 50(5): 1617⁃1626.
Zhang Gen⁃bao, Li Hao, Ran Yan, et al. A transfer learning model for bearing fault diagnosis[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1617⁃1626.
20 Wei Z, Peng G, Li C, et al. A new deep learning model for fault diagnosis with good anti⁃noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425.
21 Zhang W, Li C, Peng G, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems and Signal Processing, 2018, 100: 439⁃453.
22 Li X, Zhang W, Din Q. A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning[J]. Neurocomputing, 2018, 310(8): 77⁃95.
23 Jin G, Zhu T, Akram M W, et al. An adaptive anti⁃noise neural network for bearing fault diagnosis under noise and varying load conditions[J]. IEEE Access, 2020, 8: 74793⁃74807.
24 Hamada M S, Ryan K J. Combined analysis of overlapping stratified random sample and simple random sample data[J]. Quality and Reliability Engineering International, 2016, 32(1): 309⁃314.
25 Smith W A, Randall R B. Rolling element bearing diagnostics using the case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64⁃65: 100⁃131.
26 黄南天,杨学航,蔡国伟,等. 采用非平衡小样本数据的风机主轴承故障深度对抗诊断[J]. 中国电机工程学报, 2020, 40(2): 215⁃226.
Huang Nan⁃tian, Yang Xue⁃hang, Cai Guo⁃wei, et al. Depth counter⁃diagnosis of fan main bearing faults using unbalanced small sample data[J]. Proceedings of the Chinese Society of Electrical Engineering, 2020, 40(2): 215⁃226.
27 Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. JMLR org, 2015, arXiv:.
28 Li Y, Fan C, Li Y, et al. Improving deep neural network with multiple parametric exponential linear units[J]. Neurocomputing, 2016, 301(2): 11⁃24.
29 Hochreiter S, Schmidhuber J. Long short⁃term memory[J]. Neural Computation, 1997, 9(8): 1735⁃1780.
30 Brocki L, Marasek K. Deep belief neural networks and bidirectional long⁃short term memory hybrid for speech recognition[J]. Archives of Acoustics, 2015, 40(2): 191⁃195.
31 Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:, 2014.
32 Rusiecki A. Trimmed categorical cross‐entropy for deep learning with label noise[J]. Electronics Letters, 2019, 55(6): 319-320.
[1] Guo-fa LI,Yan-bo WANG,Jia-long HE,Ji-li WANG. Research progress and development trend of health assessment of electromechanical equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 267-279.
[2] Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295.
[3] Liang DUAN,Chun-yuan SONG,Chao LIU,Wei WEI,Cheng-ji LYU. State recognition in bearing temperature of high-speed train based on machine learning algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 53-62.
[4] Hong-kui XU,Tong-tong JIANG,Xin LI,Bin-xiang JIANG,Yong-lei WANG. LTE uplink interference analysis combined with denoising autoencoder and extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 195-203.
[5] Gui-xia LIU,Zhi-yao PEI,Jia-zhi SONG. Prediction of protein-ATP binding site based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 187-194.
[6] Xian-yan KUANG,Hui-chao LUO,Rui ZHONG,Peng OUYANG. Bus arrival time prediction based on wavelet neural network optimized by Beetle Antennae Search [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 110-117.
[7] Hong-zhi WANG,Ting-ting WANG,Huang-shui HU,Xiao-fan LU. PID control based on BP neural network optimized by Q⁃learning for speed control of BLDCM [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2280-2286.
[8] Yuan-hong LIU,Pan-pan GUO,Yan-sheng ZHANG,Xin LI. Feature extraction of sparse graph preserving projection based on Riemannian manifold [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2268-2279.
[9] Shi-jun YANG,Yu-long PEI,Heng-yan PAN,Guo-zhu CHENG,Wen-hui ZHANG. Characteristics analysising and prediction of dwelling time of urban bus [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2031-2039.
[10] Dan-tong OUYANG,Bi-ge ZHANG,Nai-yu TIAN,Li-ming ZHANG. Fail data reduction algorithm combining configuration checking with local search [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2144-2153.
[11] Hui ZHONG,Heng KANG,Ying-da LYU,Zhen-jian LI,Hong LI,Ruo-chuan OUYANG. Image manipulation localization algorithm based on channel attention convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1838-1844.
[12] Wen-long TENG,Bing-hu CONG,Yun-kun SHANG,Yu-chen ZHANG,Tian BAI. Modeling of building energy consumption prediction based on MEA⁃BP neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1857-1865.
[13] Tao CHEN,Jing QIN,Hua ZHAO,Qing-peng SU,Yong LYU,Kai ZHONG,Ying-bo WANG,Yi-qiang PEI. Prediction of gasoline engine steady state exhaust based on model group prediction method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1565-1574.
[14] Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.
[15] Xiao-long ZHU,Zhong XIE. Automatic construction of knowledge graph based on massive text data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1358-1363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!