Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 425-432.doi: 10.13229/j.cnki.jdxbgxb20211116

Previous Articles    

Image feature extraction and recognition of milling chatter of thin walled parts

Mao-yue LI(),Shuo LIU,Shuai TIAN,Gui-feng XIAO   

  1. Key Laboratory of Advanced Manufacturing and Intelligent Technology,Ministry of Education,Harbin University of Science and Technology,Harbin 150080,China
  • Received:2021-10-28 Online:2022-02-01 Published:2022-02-17

Abstract:

At present, sensor signals are widely used to identify and predict the chatter in the milling process of thin-walled parts, but the correlation between the chatter characteristics and the machined surface is not established. In this paper, image processing and pattern recognition technology are used to accurately identify and predict the machining state of thin-walled parts through milling surface images. Firstly, a hybrid filtering scheme is designed to realize the preprocessing of the collected image, then the chatter texture features of the image are extracted through the improved local binary pattern and gray level co-occurrence matrix, and the images collected in the milling process are predicted and recognized by k-nearest neighbor classification algorithm. The experimental results show that the accuracy of the model identification is 95.5% and the average running time of the algorithm is 0.069 s. The experimental results show that the method has high identification accuracy, meets the real-time requirements of chatter prediction and detection, and has good guiding significance for milling state identification and intelligent machining of thin-walled parts.

Key words: image recognition, milling chatter, thin-walled parts, local binary pattern, hybrid filtering

CLC Number: 

  • TH741

Fig.1

Three milling stages"

Fig.2

Hybrid filter preprocessing"

Fig.3

Original LBP operator"

Fig.4

Eight weight distributions"

Fig.5

Experimental installation structure diagram"

Fig.6

Processing experiment site"

Fig.7

Atlas comparison of original LBP and improved LBP"

Fig.8

LBP normalized frequency histogram"

Table 1

Global characteristic statistics"

加工状态ASM均值ENT均值CON均值IDM均值ASM标准差ENT标准差CON标准差IDM标准差
稳定阶段0.590 420.921 040.168 160.916 010.012 640.023 870.018 100.029 32
过渡阶段0.245 851.775 200.243 530.879 020.014 140.051 860.034 920.051 38
颤振阶段0.091 192.712 510.468 250.893 720.028 980.089 100.088 090.028 98

Fig.9

KNN classification model"

Fig.10

Comparison of algorithm recognition accuracy"

Table 2

Comparison of average running time of algorithms"

算法特征提取时间/s模式识别时间/s
原始LBP0.0310.026
改进LBP0.0350.024
改进LBP+GLCM0.0400.029
1 张雪薇, 于天彪, 王宛山. 薄壁零件铣削三维颤振稳定性建模与分析[J]. 东北大学学报: 自然科学版, 2015, 36(1): 99-103.
Zhang Xue-wei, Yu Tian-biao, Wang Wan-shan. Modeling and analysis for 3D chatter stability of thin-walled parts in milling process[J]. Journal of Northeastern University(Natural Science), 2015, 36(1): 99-103.
2 王志学, 刘献礼, 李茂月, 等. 切削加工颤振智能监控技术[J]. 机械工程学报, 2020, 56(24): 1-23.
Wang Zhi-xue, Liu Xian-li, Li Mao-yue, et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering, 2020,56(24): 1-23.
3 Schmitz T. The microphone feedback analogy for chatter in machining[J/OL]. [2021-08-05].
4 Li L H, An Q B. An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis[J]. Measurement, 2016, 79(4): 44-52.
5 Lin Jian-gang, Wang Dong-xing, Tian Hong-zhi,et al. Surface defect detection of machined parts based on machining texture direction[J]. Measurement Science and Technology, 2021, 32(2): 1-12.
6 Szydlowski M, Powalka B. Chatter detection algorithm based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(5-8): 517-528.
7 Lei N, Soshi M. Vision-based system for chatter identification and process optimization in high-speed milling[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9-12): 2757-2769.
8 Khalifa O, Densibali A, Faris W. Image processing for chatter identification in machining processes[J]. The International Journal of Advanced Manufacturing Technology, 2006, 31(5/6): 443-449.
9 冯东海. 基于计算机视觉的薄壁件铣削颤振在线监测[D]. 秦皇岛: 燕山大学机械工程学院, 2018.
Feng Dong-hai. Chatter monitoring on-line of milling thin-walled parts based on computer vision[D]. Qinhuangdao: College of Mechanical Engineering, Yanshan University, 2018.
10 林洁琼, 周晓勤, 孔繁森, 等. 再生切削颤振系统动态响应谐参数辨识[J]. 吉林大学学报: 工学版, 2009, 39(4): 964-969.
Lin Jie-qiong, Zhou Xiao-qin, Kong Fan-sen, et al. Harmonic parameter identification of dynamic response in regenerative machining chatter system[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(4): 964-969.
11 李秀怡. 图像纹理检测与特征提取技术研究综述[J]. 中国管理信息化, 2017, 20(23): 175-178.
Li Xiu-yi. Review of image texture detection and feature extraction[J]. China Management Information, 2017, 20(23): 175-178.
12 Ojala T, pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
13 戴金波, 肖霄, 赵宏伟. 基于低分辨率局部二值模式的人脸识别[J]. 吉林大学学报: 工学版, 2013, 43(2): 435-438.
Dai Jin-bo, Xiao Xiao, Zhao Hong-wei. Human face recognition based on low resolution local binary pattern[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(2): 435-438.
14 Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(6): 610-621.
15 鲁恒润, 王卫东, 徐志强, 等. 基于机器视觉的煤矸特征提取与分类研究[J]. 煤炭工程, 2018, 50(8): 137-140.
Lu Heng-run, Wang Wei-dong, Xu Zhi-qiang, et al. Research on feature extraction and classification of coal gangue based on machine vision[J]. Coal Engineering, 2018, 50(8): 137-140.
16 Mou Wen-ping, Zhu Shao-wei, Jiang Zhen-xi, et al.Vibration signal-based chatter identification for milling of thin-walled structure[J]. Chinese Journal of Aeronautics, 2020, 35(1): 204-214.
17 孙艺珊, 李晓洁, 赵凯. 改进LBP和HSV颜色直方图相结合的地表状态识别[J]. 测绘通报, 2020(2): 29-36, 71.
Sun Yi-shan, Li Xiao-jie, Zhao Kai. A combined algorithm of improved LBP and HSV for surface state recognition[J]. Bulletin of Surveying and Mapping, 2020(2): 29-36, 71.
[1] Xiao-dong ZHU,Qi-xian ZHANG,Yuan-ning LIU, WU-di,Zu-kang WU,Chao-qun WANG,Xin-long LI. Iris recognition based on multi⁃direction local binary pattern and stable feature [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 650-658.
[2] LIU Shu, JIANG Qi-gang, ZHU Hang, LI Xiao-dong. Reconstruction of Landsat NDVI time series of Xianghai natural deserve based on a hybrid filtering algorithm Hyb-F [J]. 吉林大学学报(工学版), 2018, 48(3): 957-967.
[3] WANG Pei-zhi, TIAN Di, LONG Tao, LI Di-fei, QIU Chun-ling, LIU Dun-yi. Automatic focusing algorithm for TOF-SIMS zircon sample image [J]. 吉林大学学报(工学版), 2017, 47(1): 308-315.
[4] WANG Yu, SHEN Xuan-jing, CHEN Hai-peng, TAN Ying. Video-based face texture representation and recognition with fusion features from multi-view [J]. 吉林大学学报(工学版), 2015, 45(6): 1954-1960.
[5] QIU Chun-ling, TAO Qiang, FAN Run-long, WANG Pei-zhi. Zircon image matching method based on description of SIFT feature by LBP [J]. 吉林大学学报(工学版), 2014, 44(6): 1793-1798.
[6] LI Gen,LI Wen-hui. Face occlusion recognition based on MEBML [J]. 吉林大学学报(工学版), 2014, 44(5): 1410-1416.
[7] LI Yang, WEN Dun-wei, WANG Ke, LIU Le. Multiple kernel MtLSSVM and its application in lung nodule recognition [J]. 吉林大学学报(工学版), 2014, 44(2): 508-515.
[8] DAI Jin-bo, XIAO Xiao, ZHAO Hong-wei. Human face recognition based on low resolution local binary pattern [J]. 吉林大学学报(工学版), 2013, 43(02): 435-438.
[9] WANG Su-jing, ZHOU Chun-guang, ZHANG Na, LI Jian-peng, ZHANG Li-biao. Age estimation by extracting facial features of shape and texture [J]. 吉林大学学报(工学版), 2011, 41(05): 1383-1387.
[10] WANG Rong-ben, WANG Chao, CHU Xiu-min. Developments of Research on Road Pavement Surface Distress Image Recognition [J]. 吉林大学学报(工学版), 2002, (4): 91-97.
[11] KAN Jun-wu, SHAO Cheng-hui, TANG Ke-hong, WANG Zhu-yu. System of Selecting Link-plates Based on Image Recognition [J]. 吉林大学学报(工学版), 2002, (3): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!