Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 1971-1981.doi: 10.13229/j.cnki.jdxbgxb20220355

Previous Articles    

Sensitivity analysis of operating parameters for proton exchange membrane fuel cells

Zi-rong YANG1,2(),Yan LI1,3,Xue-feng JI1,2,Fang LIU3,Dong HAO1,2()   

  1. 1.CATARC New Energy Vehicle Test Center (Tianjin) Co. ,Ltd. ,Tianjin 300399,China
    2.China Automotive Technology and Research Center Co. ,Ltd. ,Tianjin 300399
    3.School of Mechanical Engineering,Hebei University of Technology,Tianjin 300401,China
  • Received:2022-03-31 Online:2022-09-01 Published:2022-09-13
  • Contact: Dong HAO E-mail:yangzirong@catarc.ac.cn;haodong@catarc.ac.cn

Abstract:

A one-dimensional transient multiphase fuel cell model and a global sensitivity analysis model were established to investigate the effects of operating temperature, relative humidity, stoichiometry, and pressure on output performances. The result shows that the variation of operating temperature leads to more significant performance fluctuations at high load conditions. Increasing gas pressure and stoichiometry is beneficial to performance enhancement. The membrane dehydration phenomena caused by low relative humidity becomes more severe in small current density regions. Based on the quantitative sensitivity analysis, the nine operating parameters are classified as very sensitive, rather sensitive, and not sensitive parameter. With current density rising, cathode stoichiometry, anode inlet relative humidity, and cathode inlet relative humidity are more sensitive, which also show a typically upward trend.

Key words: power engineering and engineering thermophysics, proton exchange membrane fuel cell, operating parameter, transient mechanism model, global sensitivity analysis

CLC Number: 

  • TM911.42

Table 1

Fuel cell structural properties and operating conditions"

参数数值单位
有效反应面积25cm2
质子交换膜、催化层、微孔层、气体扩散层、流道、极板的厚度0.025,0.01,0.03,0.2,1,2mm
质子交换膜、催化层、微孔层、气体扩散层、极板的密度1980,1000,1000,1000,1000kg·m-3
质子交换膜、催化层、微孔层、气体扩散层、极板的比热容833,3300,568,2000,1580J/(kg·K)
质子交换膜、催化层、微孔层、气体扩散层、极板的热导率0.95,1.0,1.0,1.0,20W/(m·K)
催化层、微孔层、气体扩散层、极板的电导率3000,3000,3000,5000S/m
催化层中聚合物的体积分数0.45-
催化层、微孔层、气体扩散层的接触角100,120,120°
催化层、微孔层、气体扩散层的孔隙率0.3,0.4,0.7-
环境对流传热系数20W/(m2·K)
进气化学计量比1.5-
进气压强151 988Pa
运行温度80
进气相对湿度0.8-
进气温度80

Table 2

Governing equations"

方程计算表达式求解域
膜态水守恒方程ρPEMEW?ωλ?t=ρPEMEW??Dmweff??λ+Smw质子交换膜、催化层
液态水守恒方程?ερlqslq?t=??ρlqKlqμlq??pl+Slq催化层、扩散层、微孔层
气体守恒方程??tε1-slqρgYi=??ρgDieff?Yi+Si,??in??CL,MPL,GDL??tρgYi+??ρgugYi=Si,???inCH催化层、扩散层、微孔层、流道
能量守恒方程??tρcpfl,sleffT=??kfl,sleff??T+ST整个燃料电池区域
输出电压

Vout=Vnernst-Vact-Vohmic-Vconc

Vnernst=ΔG2F+ΔS2FT-Tref+RT2FlnPH2Pref,a+12lnPO2Pref,c

-

Fig.1

Trajectory diagram in the input space for k=3"

Fig.2

Comparison between model simulation results and experimental data"

Table 3

Simulation conditions"

工况温度/℃压强/Pa化学计量比相对湿度
180151 9881.50.8
290151 9881.50.8
370151 9881.50.8
460151 9881.50.8
580121 5901.50.8
680202 6501.50.8
780253 3121.50.8
880151 9881.30.8
980151 9882.00.8
1080151 9882.50.8
1180151 9881.50.2
1280151 9881.50.3
1380151 9881.50.4
1480151 9881.50.6
1580151 9881.51.0

Fig.3

Fuel cell performances when the operating temperature is 60,70,80, and 90 ℃"

Fig.4

Fuel cell performances when the operating pressure is different"

Fig.5

Fuel cell performances when stoichiometry is 1.3, 1.5, 2.0 and 2.5"

Fig.6

Fuel cell performances when the relativehumidity is different"

Table 4

Value of fuel cell operating parameters"

参数符号取值
燃料电池运行温度/℃Tcell60~80
阳极进气温度/℃Tin,a60~80
阴极进气温度/℃Tin,c60~80
阳极进气湿度RHa0.1~1.0
阴极进气湿度RHc0.1~1.0
阳极进气化学计量比STa1.0~3.0
阴极进气化学计量比STc1.0~3.0
阳极进气压强/PaPa101 325~303 975
阴极进气压强/PaPc101 325~303 975

Fig.7

Sensitivity index of operating parameters at 1.0 A·cm-2"

Table 5

Sensitivity classification of operating parameters"

分类运行工况参数
高敏感参数STcRHaRHc
较敏感参数PcPaSTa
不敏感参数TcellTin,aTin,c

Fig.8

Output voltage when high sensitivity parameters and insensitivity parameters change"

Fig.9

Sensitivity index of operating parameters atdifferent current densities"

1 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J].化工进展, 2022, 41(3): 1539-1555.
Gao Wei-tao, Lei Yi-jie, Zhang Xun, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555.
2 侯中军, 江洪春, 王仁芳, 等. 轿车用燃料电池发动机示范应用稳定性[J]. 吉林大学学报: 工学版, 2011, 41(): 131-136.
Hou Zhong-jun, Jiang Hong-chun, Wang Ren-fang, et al. Performance stability of fuel cell engine applied in the fuel cell car demonstration[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(Sup.2): 131-136.
3 孙闫,夏长高,尹必峰,等. 燃料电池电动汽车的能量管理[J].吉林大学学报: 工学版. DOI:10.13229/j.cnki.jdxbgxb20210773 .
doi: 10.13229/j.cnki.jdxbgxb20210773
Sun Yan, Xia Chang-gao, Yin Bi-feng, et al. Energy management strategyof fuel cell electric vehicles[J]. Journal of Jilin University(Engineering and Technology Edition).DOI:10.13229/j.cnki.jdxbgxb20210773 .
doi: 10.13229/j.cnki.jdxbgxb20210773
4 Chen H C, Liu B, Zhang T, et al. Influencing sensitivities of critical operating parameters on PEMFC output performance and gas distribution quality under different electrical load conditions[J]. Applied Energy, 2019, 255: No. 113849.
5 Miansari M, Sedighi K, Amidpour M, et al. Experimental and thermodynamic approach on proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2009, 190(2): 356-361.
6 Barakat E G, Abdel-Rahman A K, Ahmed M A, et al. An experimental study of operational parameters on the performance of PEMFCs[C]∥Asme International Mechanical Engineering Congress & Exposition. British Columbia, Canada, 2010, 927-933.
7 Zhang Q, Lin R, Cui X, et al. Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution[J]. Energy, 2016, 115(1): 550-560.
8 Liu Y F, Fan L, Pei P C, et al. Asymptotic analysis for the inlet relative humidity effects on the performance of proton exchange membrane fuel cell[J]. Applied Energy, 2018, 231: 573-584.
9 Baschuk J, Li X G. Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding[J]. Journal of Power Sources, 2000, 86(1/2): 181-196.
10 Mann R F, Amphlett J C, Hooper M, et al. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell[J]. Journal of Power Sources, 2000, 86(1/2): 173-180.
11 Bernardi D M. Water-balance calculations for solid-polymerelectrolyte fuel cells[J]. Journal of the Electrochemical Society, 1990, 137(11): 3344-3350.
12 Yang Z R, Du Q, Jia Z W, et al. A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems[J]. Applied Energy, 2019, 256: No. 113959.
13 Bao C, Bessler W G. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development[J]. Journal of Power Sources, 2015, 275: 922-934.
14 Jiao K, Li X G. Effect of surface dynamic wettability in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9095-9103.
15 Liao X, Liu K, Le J, et al. Extended affine arithmetic-based global sensitivity analysis for power flow with uncertainties[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: No. 105440.
16 Min C H, He Y L, Liu X L, et al. Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation: part II: results of sensitivity analysis and validation of the model[J]. Journal of Power Sources, 2006, 160(1): 374-385.
17 Laoun B, Naceur M W, Khellaf A, et al. Global sensitivity analysis of proton exchange membrane fuel cell model[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9521-9528.
18 Jiang Y, Yang Z R, Jiao K,et al. Sensitivity analysis of uncertain parameters based on an improved proton exchange membrane fuel cell analytical model[J]. Energy Conversion & Management, 2018, 164: 639-654.
19 焦魁 等. 质子交换膜燃料电池水热管理[M]. 北京:科学出版社, 2020.
20 Yang Z R, Du Q, Huo S, et al. Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(40): 25372-25387.
21 Huo S, Jiao K, Park J W. On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell[J]. Applied Energy, 2019, 233-234: 776-788.
22 Wu K C, Xie X, Wang B W, et al. Two-dimensional simulation of cold start processes for proton exchange membrane fuel cell with different hydrogen flow arrangements[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17795-17812.
23 Yao L, Peng J, Zhang J B, et al. Numerical investigation of cold-start behavior of polymer electrolyte fuel cells in the presence of super-cooled water[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15505-15520.
24 Gwak G H, Ko J H, Ju H. Numerical investigation of cold-start behavior of polymer-electrolyte fuel-cells from subzero to normal operating temperatures- effects of cell boundary and operating conditions[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21927-21937.
25 Yang Z R, Du Q, Huo S, et al. Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(40): 25372-25387.
26 Wang B, Wu K, Yang Z, et al. A quasi-2D transient model of proton exchange membrane fuel cell with anode recirculation[J]. Energy Conversion & Management, 2018, 171: 1463-1475.
27 Abdollahzadeh M, Ribeirinha P, Boaventura M, et al. Three-dimensional modeling of PEMFC with contaminated anode fuel[J]. Energy, 2018, 152: 939-959.
28 Morris M D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics, 1991, 33(2): 161-174.
29 Xia Z F, Chen H C, Zhang T, et al. Effect of channel-rib width ratio and relative humidity on performance of a single serpentine PEMFC based on electrochemical impedance spectroscopy[J]. International Journal of Hydrogen Energy, 2022, 47(26):13076-13086.
30 Najmi A, Anyanwu I S, Xie X, et al. Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields[J]. Energy, 2021, 217: No. 119313.
31 Yang T, Sheu B, Ghalambaz M, et al. Effects of operating parameters and load mode on dynamic cell performance of proton exchange membrane fuel cell[J]. International Journal of Energy Research, 2021, 45(2): 2474-2487.
32 Jiao K, Li X G. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy & Combustion Science, 2011, 37(3): 221-291.
33 Yin L Z, Qi L, Chen W R, et al. Experimental analysis of optimal performance for a 5 kW PEMFC system[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5499-5506.
[1] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[2] WANG Zeng-hui, HUANG Dong-yan, LI Zhuo-shi, JIA Hong-lei, WAN Bao-cheng. Universal the blade the broken stubble power consumption influence of the working parameters of the rotary tiller broken stubble [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 122-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!