Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 2864-2873.doi: 10.13229/j.cnki.jdxbgxb20210410

Previous Articles     Next Articles

Layout optimization of auxiliary stopping areas for normal high⁃speed maglev based on scenario division

Peng-zi CHU1,2(),Yi YU2(),Dan-yang DONG2,Hui LIN2,Hua-hua ZHAO2   

  1. 1.Key Laboratory of Road and Traffic Engineering,Ministry of Education,Tongji University,Shanghai 201804,China
    2.Maglev Transportation Engineering R&D Center,Tongji University,Shanghai 201804,China
  • Received:2021-05-10 Online:2022-12-01 Published:2022-12-08
  • Contact: Yi YU E-mail:cpz_myhk@163.com;12164@tongji.edu.cn

Abstract:

The layout process of auxiliary stopping areas (ASAs) for normal high-speed maglev is facing the challenges of various demands and complex constraints. Focusing on ensuring the safety of maglev train operation with fewer ASAs, a scenario division-based method for ASA layout was proposed. Firstly, the general scenarios of ASA layout were divided into train operation direction, train speed profile, demand priority section and demand restriction section, and the optimization models of ASA layout were constructed. Then, taking that each ASA is as far as possible from the terminal station as the criterion, the optimization rules for different scenarios were designed, and then a heuristic algorithm for solving the optimization model was proposed. Finally, numerical experiments were carried. The results illustrate that the proposed method can efficiently obtain reliable and economical layout schemes. The demand of ASAs increases as the train stepping redundancy time increases. When setting up ASAs for bidirectional operation, the demand for ASAs can reduce by using the ASAs in the opposite direction.

Key words: maglev transportation, auxiliary stopping area, scenario division, train safety, cost saving

CLC Number: 

  • U237

Fig.1

Idea for ASA layout optimization"

Fig.2

ASA spacing considering single speed profile"

Fig.3

ASA adjustment considering multiple speed profiles"

Fig.4

Schematic diagram of demand priority section"

Fig.5

Schematic diagram of demand restriction section"

Fig.6

Reference ASA adjustment considering first direction"

Fig.7

Flowchart of layout method based on scenarios division"

Table 1

Line gradient"

区段起点位置/m终点位置/m坡度/%
105 3000.000
25 3006 1300.302
36 1306 3000.450
46 3006 970-0.250
56 9708 8750.100
68 87511 6150.000
711 61513 3850.353
813 38514 205-0.369
914 20519 3150.000
1019 31520 0254.117
1120 02523 635-0.118
1223 63527 2850.000
1327 28528 5350.239
1428 53530 7350.000
1530 73539 6500.225
1639 65041 530-0.432
1741 53042 880-0.597
1842 88054 4800.000
1954 48056 0400.382
2056 04059 210-0.689
2159 21061 1400.312
2261 14063 5000.000

Table 2

Demand restriction sections"

区段起点位置/m终点位置/m区段起点位置/m终点位置/m
15 1005 5001028 33528 735
25 9307 1701130 53530 935
38 67510 3061231 60032 600
411 41511 8151339 45039 850
513 18513 5851441 33043 080
614 00514 4051552 00053 100
719 11520 2251654 28054 680
823 43523 8351755 84059 410
927 08527 485

Fig.8

Layout scheme for unidirectional operation"

Fig.9

Layout scheme for bidirectional operation considering first direction"

Fig.10

Layout scheme for bidirectional operation considering two directions separately"

1 虞翊, 姜西, 林辉, 等. 基于防护速度的高速磁浮辅助停车区设置[J]. 同济大学学报:自然科学版, 2019, 47(9): 1310-1316.
Yu Yi, Jiang Xi, Lin Hui, et al. Setting method of auxiliary stopping area for high speed maglev based on protection speed[J]. Journal of Tongji University (Natural Science), 2019, 47(9): 1310-1316.
2 卞建光. 磁浮列车运行控制系统相关性质及辅助停车区特性研究[D]. 杭州: 浙江大学电气工程学院, 2006.
Bian Jian-guang. Study on the related properties of maglev train operation control system and characteristics of auxiliary stopping area[D]. Hangzhou: College of Electrical Engineering, Zhejiang University, 2006.
3 李强. 上海磁浮示范运营线列车速度曲线监控功能分析[J]. 城市轨道交通研究, 2006, 9(2): 47-49.
Li Qiang. Speed curve monitoring of shanghai maglev demonstration line[J]. Urban Mass Transit, 2006, 9(2): 47-49.
4 杨光, 唐祯敏. 高速磁浮列车的安全速度防护问题研究[J]. 北京交通大学学报, 2007, 31(2): 38-42.
Yang Guang, Tang Zhen-min. Study on safety speed protection of the high maglev train[J]. Journal of Beijing Jiaotong University, 2007, 31(2): 38-42.
5 Lai Q Y, Liu J, Haghani A, et al. Energy-efficient speed profile optimization for medium-speed maglev trains[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 141: No.102007.
6 姜西, 虞翊, 邓志翔, 等. 考虑追踪运行的高速磁浮辅助停车区设置优化[J]. 铁道科学与工程学报, 2021, 18(2): 325-333.
Jiang Xi, Yu Yi, Deng Zhi-xiang, et al. Setting optimization of auxiliary stopping area for high-speed maglev considering train tracking operation[J]. Journal of Railway Science and Engineering, 2021, 18(2): 325-333.
7 Ding W L, Miao J R, Lai Q Y, et al. Calculation method of train tracking interval for medium-speed maglev train with consideration of auxiliary-stop area[C]∥Proceedings of 3rd International Conference on Advances in Materials, Machinery, Electronics, Wuhan, China, 2019: No.020106.
8 柴晓凤, 刘军, 赖晴鹰, 等. 考虑辅助停车区约束的中速磁浮列车速度曲线节能优化方法[J]. 中南大学学报:自然科学版, 2019, 50(6): 1499-1506.
Chai Xiao-feng, Liu Jun, Lai Qing-ying, et al. Optimal energy-efficient trajectory planning for middle-speed maglev considering constraint of auxiliary stopping area[J]. Journal of Central South University (Science and Technology), 2019, 50(6): 1499-1506.
9 赖晴鹰, 刘军, 赵若愚, 等. 基于变间距动态规划的中高速磁悬浮列车速度曲线优化[J]. 吉林大学学报:工学版, 2019, 49(3): 749-756.
Lai Qing-ying, Liu Jun, Zhao Ruo-yu, et al. Optimal trajectory planning for middle-to-high speed maglev based on dynamic programming with mutative spacing[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 749-756.
10 Yang Y F, Nan N, Wei W J, et al. A section decentralization operation strategy for medium-speed maglev train based on battery states[C]∥Proceedings of the 37th Chinese Control Conference, Wuhan, China, 2018: 7804-7809.
11 Lai Q Y, Liu J, Meng L, et al. Optimization of the auxiliary stopping area planning in the middle-to-high speed maglev[J]. Transportation Systems and Technology, 2018, 4(2): 141-151.
12 Yu Y, Chu P Z, Dong D Y, et al. Auxiliary stopping area layout method for high-speed maglev operated bidirectionally on single track[J]. Journal of Advanced Transportation, 2021, 2021: No.5571788.
13 Zhao H H, Chen Y J, Liao Z M, et al. Study of speed curve monitoring technology for high-speed maglev operation[C]∥Proceedings of the 16th COTA International Conference of Transportation Professionals, Shanghai, China, 2016: 1033-1045.
14 江亚, 吴汶麒, 刘进. 磁浮列车运行控制系统二维速度防护曲线仿真[J]. 同济大学学报:自然科学版, 2004, 32(3): 397-400.
Jiang Ya, Wu Wen-qi, Liu Jin. Simulation of high-speed maglev train 2-D speed protection drive[J]. Journal of Tongji University (Natural Science), 2004, 32(3): 397-400.
15 刘进, 吴汶麒. 高速磁悬浮交通二维速度防护曲线及其算法研究[J]. 中国铁道科学, 2002, 23(4): 108-112.
Liu Jin, Wu Wen-qi. Research on 2-D speed protection curve and its algorithm of high-speed maglev transportation[J]. China Railway Science, 2002, 23(4): 108-112.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Shi Wen-ku, Hong Zhe-hao, Zhao Tao . Automobile multiobjective optimization design of power assembly mounting system and software development[J]. 吉林大学学报(工学版), 2006, 36(05): 654 -0658 .
[2] Hou Jing-wei;Zhao Ding-xuan;Shang Tao;Tang Xin-xing . Gain switching force feedback algorithm for teleoperation robot end actuator[J]. 吉林大学学报(工学版), 2008, 38(03): 570 -0574 .
[3] SUN Guoen, ZHANG Li, LI Hongji, ZHANG Chunling, LIANG Jicai, ZHANG Wanxi. Structure and Properties of EVA/Al2O3 Nanocomposite Materials[J]. 吉林大学学报(工学版), 2005, 35(06): 577 -0581 .
[4] XU Tao,CHENG Fei,SONG Guangcai,XUAN Weiqi,XUE Bingyang . BFGS algorithm for structural static reanalysis of topological modification[J]. 吉林大学学报(工学版), 2009, 39(01): 103 -107 .
[5] Li You-de, Liu Wei,Li Jing,Zhao Jian,Song Da-feng,Sha Hong-liang . Hardware-in-loop-simulation of vehicle stability control system[J]. 吉林大学学报(工学版), 2007, 37(04): 737 -740 .
[6] Lin Yi,Yan Lei,Tong Qing-xi . Optimum trajectory planning in characteristic areas for underwater
aided navigation correlation matching algorithms
[J]. 吉林大学学报(工学版), 2008, 38(02): 439 -0443 .
[7] YU Duo-nian, ZOU Ji1,WANG Deng-feng,WANG Jian-yong. Analysis of topological optimization on optimal heavy truck cab's spot weld layout[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 264 -0268 .
[8] Peng Ya-ping1,Guo Ying-nan, Huang Wei-jun,Tan Man-zhi,Dong Lei,Wang Zhi-wei . Cyclebycycle variation of ethanol homogeneous
charge compression ignition combustion
[J]. 吉林大学学报(工学版), 2007, 37(02): 301 -0306 .
[9] LIU Shun-an;HU Qing-yu . Application of PSO-BP network algorithm in optimization of automotive suspension[J]. 吉林大学学报(工学版), 2009, 39(03): 571 -0575 .
[10] SI Jing-jing,ZHUANG Bo-jin,CAI An-ni. Network coding based lifetime maximization in wireless sensor network[J]. 吉林大学学报(工学版), 2011, 41(03): 822 -827 .