Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 2994-3005.doi: 10.13229/j.cnki.jdxbgxb20210546

Previous Articles     Next Articles

Vehicle longitudinal following based on improved brain emotional learning model

Min-xiang WEI(),Jia-wei YANG,Kai CHEN,Zhi-hao WANG,Zhao SHA   

  1. School of Energy and Power,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Received:2021-06-18 Online:2022-12-01 Published:2022-12-08

Abstract:

In order to improve the safety of longitudinal follow-up control algorithm for unmanned vehicles, an indirect adaptive brain emotion neural robust controller (iARBERC) was proposed based on the brain emotion learning model and the good nonlinear approximation characteristics of radial basis function neural network. The stability of the control system was proved by Lyapunov analysis method. The simulation results show that iARBERC has the fastest response speed, the smallest tracking error and the best robust performance. Although the total control energy was improved, the deviation is less than 4%. Finally, iARBERC was applied to the semi-physical simulation platform of the following control system of the unmanned vehicle. The results show that the vehicle equipped with iARBERC has good following ability to the frequently changing longitudinal speed.

Key words: unmanned driving, longitudinal following, brain emotional learning, nonlinear approximation, robustness, semi-physical simulation

CLC Number: 

  • U461.9

Fig.1

Radial basis emotional neural learning model"

Fig.2

iARBERC control structure diagram"

Table 1

The minimum cycle calculation speed simulation results of three kinds of controller"

类别计算时间
RBFNNARBENC(2018)iARBERC
无干扰max0.00640.00720.0032
min3.8860×10-44.0770×10-44.4670×10-4
mean7.6982×10-47.5332×10-47.1550×10-4
正旋干扰max0.00640.00660.0040
min4.0020×10-43.9870×10-43.8680×10-4
mean7.8781×10-47.5654×10-47.6305×10-4
脉冲干扰max0.01030.01200.0104
min0.00270.00260.0024
mean0.00810.00990.0070
测量误差SNR=35max0.04420.01150.0287
min3.7831×10-43.5920×10-43.8900×10-4
mean0.00110.00119.2810×10-4

Table 2

MSE simulation results of three kinds of controller"

类别MSE
RBFNNARBENC(2018)iARBERC
无干扰0.001 042 3740.001 090 6520.000 995 991
正旋干扰0.001 048 2590.001 099 0180.001 004 257
脉冲干扰0.001 045 1100.001 094 5350.000 996 313

测量误差

SNR=35

mean0.001 043 3530.001 090 5350.000 996 040
max0.001 051 4340.001 092 1450.001 006 870
min0.001 035 6450.001 088 3230.000 990 060

Table 3

Control energy J simulation results of three kinds of controller"

类别J
RBFNNARBENC(2018)iARBERC
无干扰11.448 611.295 811.648 9
正旋干扰12.146 211.955 512.375 1
脉冲干扰13.501 113.352 413.676 9

测量误差

SNR=35

mean14.199 912.290 114.599 34
max14.480 112.471 214.958 85
min13.861 6812.085 114.385 2

Fig.3

Pendulum angle and angular velocity change without interference"

Fig.4

Difference between the pendulum angle and the expected trajectory without interference"

Fig.5

Car control input changes without interference"

Fig.6

Pendulum angle and angular velocity change under sinusoidal interference"

Fig.7

Difference between the pendulum angle and the expected trajectory under sinusoidal interference"

Fig.8

Control input changes under sinusoidalinterference"

Fig.9

Partial enlarged view of car control input changes under sinusoidal interference"

Fig.10

Pendulum angle and angular velocity change under pulse interference"

Fig.11

Partial enlarged view of pendulum angular velocity change under pulse interference"

Fig.12

Difference between the pendulum angle and the expected trajectory under pulse interference"

Fig.13

Car control input changes under pulse interference"

Fig.14

Partial enlarged view of car control input changes under pulse interference"

Fig.15

Hardware in the loop simulation platform for unmanned vehicle following control system"

Fig.16

Change of tracking distance at constant speed in straight line"

Fig.17

Change of rear vehicle acceleration at constant speed in straight line(controller output)"

Fig.18

Change of front and rear vehicle speed atconstant speed in straight line"

Fig.19

Change of speed difference between front and rear vehicles at constant speed in straight line"

Fig.20

Throttle opening change and brake master cylinder pressure change of front vehicle"

Fig.21

Change of tracking distance at variable speed in straight line"

Fig.22

Change of rear vehicle acceleration at variable speed in straight line(controller output)"

Fig.23

Change of front and rear vehicle speed at variable speed in straight line"

Fig.24

Change of speed difference between front and rear vehicles at variable speed in straight line"

1 朱敏,陈慧岩. 无人驾驶越野车辆纵向速度跟踪控制试验[J]. 机械工程学报, 2018, 54(24): 111-117.
Zhu Min, Chen Hui-yan. Longitudinal speed tracking control test of driverless off road vehicle[J]. Chinese Journal of Mechanical Engineering, 2018, 54(24): 111-117.
2 王志文,辛鹏,孙洪涛,等. 基于收缩约束模型预测控制的无人车辆路径跟踪[J]. 控制与决策, 2022,37(3): 625-634.
Wang Zhi-wen, Xin Peng, Sun Hong-tao, et al. Path tracking of unmanned vehicle based on shrinkage constrained model predictive control[J]. Control and Decision, 2022, 37(3): 625-634.
3 Jullierme E, Guilherme A, Reinaldo M. Longitudinal model identification and velocity control of an autonomous car[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 777-786.
4 张正华. 基于神经网络的无人驾驶车辆轨迹跟踪控制[D]. 秦皇岛:燕山大学车辆与能源学院, 2019.
Zhang Zheng-hua. Trajectory tracking control of unmanned vehicle based on neural network[D]. Qinhuangdao: School of Vehicle and Energy, Yanshan University, 2019.
5 郑小冬. 特殊道路下智能汽车自动驾驶控制策略的研究[D]. 重庆:重庆交通大学机电与车辆工程学院, 2018.
Zheng Xiao-dong. Research on automatic driving control strategy of intelligent vehicles on special roads[D]. Chongqing:School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, 2018.
6 张家旭,王欣志,赵健,等. 汽车高速换道避让路径规划及离散滑模跟踪控制[J]. 吉林大学学报: 工学版, 2021, 51(3): 1081-1090.
Zhang Jia-xu, Wang Xin-zhi, Zhao Jian, et al. Path planning and discrete sliding mode tracking control for vehicle high speed lane changing[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 1081-1090.
7 Chih L, Hwang, Chang C, et al. Path tracking of an autonomous ground vehicle with different payloads by hierarchical improved fuzzy dynamic sliding-mode control[J]. IEEE Transactions on Fuzzy Systems, 2014, 26(2): 899-914.
8 任殿波,张继业. 基于Lyapunov函数方法的时滞车辆纵向跟随控制[J]. 控制与决策, 2007(8): 918-921, 926.
Ren Dian-bo, Zhang Ji-ye. Vehicle longitudinal following control with time delay based on Lyapunov function method[J]. Control and Decision, 2007(8): 918-921, 926.
9 吴晟博,曹理想. 无人驾驶车辆轨迹跟踪控制研究[J]. 汽车实用技术, 2020(1): 51-53.
Wu Sheng-bo, Cao Li-xiang. Research on trajectory tracking control of driverless vehicles[J]. Automotive Practical Technology, 2020(1): 51-53.
10 Chu Hong-qing, Guo Lu-lu, Chen Hong, et al. Optimal car-following control for intelligent vehicles using online road-slope approximation method[J]. Science China (Information Sciences), 2021, 64(1): 94-109.
11 Moren J, Balkenius C. A computational model of emotional learning in the amygdala[C]∥From Animals to Animats 6 Proceedings of the Sixth International Conference, Simulation of Adaptive Behavior, Cambridge, England, 2000: 67-70.
12 Moren J. Emotion and learning: a computational model of the amygdala[J]. Cybernetics and Systems, 2001, 32: 611-636.
13 Baghbani F, Akbarzadeh-T M-R, Naghibi Sistani M-B. Stable robust adaptive radial basis emotional neurocontrol for a class of uncertain nonlinear systems[J]. Neuro Computing, 2018, 309: 11-26.
14 Baghbani F, Akbarzadeh-T M-R, Naghibi Sistani M-B, et al. Emotional neural networks with universal approximation property for stable direct adaptive nonlinear control systems[J]. Engineering Applications of Artificial Intelligence, 2020, 89: No.103447.
15 Lin C M, Ramarao R, Gopalai S H. Self-organizing adaptive fuzzy brain emotional learning control for nonlinear systems[J]. International Journal of Fuzzy Systems, 2019, 21(7): 1989-2007.
16 Le T L, Huynh T T, Lin C M. Adaptive filter design for active noise cancellation using recurrent type-2 fuzzy brain emotional learning neural network[J]. Neural Computation & Application, 2020, 32: 8725-8734.
17 Akhormeh A N, Roshanian J, Moradimaryamnegari H, et al. Online and stable parameter estimation based on normalized brain emotional learning model (NBELM)[J]. Adaptive Control and Signal Processing, 2019, 33(7): 1047-1065.
18 Vahedi M, Zaeif M H, Kalat A A. A simple stable adaptive neuro-fuzzy speed controller for induction motors[J]. Intelligent and Fuzzy Systems, 2015, 29(2): 571-581.
19 Chao Fei, Zhou Da-jun, Lin Chih-min, et al. Type-2 fuzzy hybrid controller network for robotic systems[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3778-3792.
20 隋振,姜源. 基于类脑情感学习回路模型的两点预瞄驾驶员转向模型[J]. 吉林大学学报:工学版, 2020, 50(3): 1098-1105.
Sui Zhen, Jiang Yuan. Two point preview driver steering model based on brain like emotional learning loop model[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 1098-1105.
21 刘金琨. 智能控制[M]. 北京:清华大学出版社, 2019: 71-73.
[1] Heng-yan PAN,Wen-hui ZHANG,Bao-yu HU,Zun-yan LIU,Yong-gang WANG,Xiao ZHANG. Construction and robustness analysis of urban weighted subway⁃bus composite network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2582-2591.
[2] Xiang-jun YU,Yuan-hui HUAI,Zong-wei YAO,Zhong-chao SUN,An YU. Key technologies in autonomous vehicle for engineering [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1153-1168.
[3] Xiao-dong ZHU,Qi-xian ZHANG,Yuan-ning LIU, WU-di,Zu-kang WU,Chao-qun WANG,Xin-long LI. Iris recognition based on multi⁃direction local binary pattern and stable feature [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 650-658.
[4] XU Xiu-jun, LI Zhen, WANG Li-quan, ZHANG Tong-xi. Modeling and semi-physical simulation of initial pipe laying under current boundary [J]. 吉林大学学报(工学版), 2018, 48(3): 803-811.
[5] HU Yun-feng, GU Wan-li, LIANG Yu, DU Le, YU Shu-you, CHEN Hong. Start-stop control of hybrid vehicle based on nonlinear method [J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
[6] GU Wan-li, ZHANG Sen, HU Yun-feng, CHEN Hong. Nonlinear controller design of brushed DC motor [J]. 吉林大学学报(工学版), 2017, 47(3): 900-907.
[7] MA Bei, ZHANG Hai-lin, ZHANG Zhao-wei, ZHONG Ming. Imperfect channel state information based D2D power allocation algorithm [J]. 吉林大学学报(工学版), 2016, 46(4): 1320-1324.
[8] LI Yi-bing,CHANG Guo-bin,YE Fang. Exponential entropy-based spectrum sensing algorithm in cognitive radio [J]. 吉林大学学报(工学版), 2014, 44(5): 1506-1511.
[9] WANG You-wei, LIU Yuan-ning, ZHU Xiao-dong. Novel robust watermarking algorithm for regional attacks of digital images [J]. 吉林大学学报(工学版), 2014, 44(4): 1151-1158.
[10] TIAN Li-yuan,WANG Qing-nian,WANG Peng-yu. FlexRay network development of dual-motor hybrid power-train system [J]. 吉林大学学报(工学版), 2014, 44(3): 585-591.
[11] WANG Shuai-fu, LIU Jing-lin. Stepping motor control system based on brain emotional learning model [J]. 吉林大学学报(工学版), 2014, 44(3): 765-770.
[12] LIU Fu, HOU Tao, LIU Yun, ZHANG Xiao. A variable trade-off parameter support vector domain description [J]. 吉林大学学报(工学版), 2014, 44(2): 440-445.
[13] CHEN Chen, DANG Jing-min, HUANG Jian-qiang, WANG Yi-ding. DFB laser temperature control system with high stability and strong robustness [J]. 吉林大学学报(工学版), 2013, 43(04): 1004-1010.
[14] LIU Shu-cheng, PAN Xin, WEI Wei, YAN Qing-dong, LAI Yu-yang. Complexity-based robustness analysis of turbulence model in torque converter flow field simulation [J]. 吉林大学学报(工学版), 2013, 43(03): 613-618.
[15] LIU Hao, ZHANG Lian-ming, ZHU Tong-lin. P2P overlay network model based on Cayley graph [J]. 吉林大学学报(工学版), 2011, 41(05): 1414-1420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang Peng,Li Yuan-chun . Modeling and control for the system of two manipulators in handling
flexible payload based on hinge configuration
[J]. 吉林大学学报(工学版), 2008, 38(02): 444 -0448 .
[2] Liu Zong-wei,Wang Deng-feng,Jiang Ji-guang,Liang Jie,Wang Shi-gang . Improving sound quality inside vehicle by
active noise control method
[J]. 吉林大学学报(工学版), 2008, 38(02): 258 -0262 .
[3] SUN Wan-chen, WANG Zong-shu,LI Guo-liang,LIU Zhong-chang,XIE Fang-xi, YANG Ji-rui . Effects of fuel cetane number on emissions from a turbocharged and
intercooled diesel engine under transient operating conditions
[J]. 吉林大学学报(工学版), 2008, 38(04): 791 -796 .
[4] Shi Wen-ku, Hong Zhe-hao, Zhao Tao . Automobile multiobjective optimization design of power assembly mounting system and software development[J]. 吉林大学学报(工学版), 2006, 36(05): 654 -0658 .
[5] Hou Jing-wei;Zhao Ding-xuan;Shang Tao;Tang Xin-xing . Gain switching force feedback algorithm for teleoperation robot end actuator[J]. 吉林大学学报(工学版), 2008, 38(03): 570 -0574 .
[6] SUN Guoen, ZHANG Li, LI Hongji, ZHANG Chunling, LIANG Jicai, ZHANG Wanxi. Structure and Properties of EVA/Al2O3 Nanocomposite Materials[J]. 吉林大学学报(工学版), 2005, 35(06): 577 -0581 .
[7] XU Tao,CHENG Fei,SONG Guangcai,XUAN Weiqi,XUE Bingyang . BFGS algorithm for structural static reanalysis of topological modification[J]. 吉林大学学报(工学版), 2009, 39(01): 103 -107 .
[8] Li You-de, Liu Wei,Li Jing,Zhao Jian,Song Da-feng,Sha Hong-liang . Hardware-in-loop-simulation of vehicle stability control system[J]. 吉林大学学报(工学版), 2007, 37(04): 737 -740 .
[9] Lin Yi,Yan Lei,Tong Qing-xi . Optimum trajectory planning in characteristic areas for underwater
aided navigation correlation matching algorithms
[J]. 吉林大学学报(工学版), 2008, 38(02): 439 -0443 .
[10] YU Duo-nian, ZOU Ji1,WANG Deng-feng,WANG Jian-yong. Analysis of topological optimization on optimal heavy truck cab's spot weld layout[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 264 -0268 .