Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (2): 312-327.doi: 10.13229/j.cnki.jdxbgxb20220622

Previous Articles     Next Articles

Overview and prospect of distribution network topology identification

Guo WANG1,2(),Wen-kai GUO1,3,Chang-chun WANG1,3   

  1. 1.School of Automation & Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education,Lanzhou Jiaotong University,Lanzhou 730070,China
    3.Gansu Province Engineering Laboratory for Rail Transit Electrical Automation,Lanzhou Jiaotong University,Lanzhou 730070,China
  • Received:2022-05-20 Online:2023-02-01 Published:2023-02-28

Abstract:

Topology identification of distribution network is an important work to ensure the safe and stable operation of distribution network. It could provide structure data for system power flow calculation, load capacity distribution, fault diagnosis, power network state estimation, which is the foundation of distribution network system analysis.The existing research of distribution network topology identification into two categories could be divided in this paper : the first type of method is based on historical topology information, including matrix method, innovation graph method and optimal matching method. The second type of method is based on real-time measurement information, including correlation judgment method, signal injection method, linear programming method and machine learning method. Finally,the application range, main used data and characteristics of the existing methods was analyzed,the future research direction of distribution network topology identification was proposed.

Key words: power system, distribution network, topology identification, historical topology information, real-time measurement information

CLC Number: 

  • TM71

Fig.1

Classification of distribution network topology identification methods"

Fig.2

Block diagram of dynamic estimation"

Fig.3

Schematic diagram of innovation graph method"

Fig.4

Schematic diagram of optimal matching method"

Fig.5

Schematic diagram of signal injection method"

Fig.6

Schematic diagram of machine learning method"

Table 1

Comparative analysis of different methods"

方 法适用结构主要使用数据特 点
矩阵法不限结构节点与连边信息能通过拓扑图直观反映出连接关系,但面对复杂网络架构时, 矩阵编写繁琐,工作量大
新息图法辐射状结构节点与连边信息、潮流参数可同时进行故障定位和异常数据检测,但依赖于状态估计结 果,对历史数据质量有较高要求
最优匹配法不限结构潮流参数可对某条支路或回路进行精准辨识,但依赖于状态估计结果, 对历史数据质量有较高要求
相关性判断法辐射状结构潮流参数原理简单,计算步骤少,但主要适用于单台区拓扑辨识,所需数据量较大
信号注入法辐射状结构电力载波信号、潮流参数无需计算,通过信号分析完成拓扑辨识,但主要适用于单个 台区拓扑辨识,且需多种设备支撑
线性规划法不限结构潮流参数、开关状态原理简单,可利用数据较多,但计算复杂,拓扑辨识精度较低
机器学习法不限结构不限数据无需计算,通过模型训练完成拓扑辨识,但易受数据质量和 训练环境等外界因素影响
1 程路, 邢璐.2030年碳排放达到峰值对电力发展的要求及影响分析[J]. 中国电力, 2016, 49(1): 174-177.
Cheng Lu, Xing Lu. Analysis of requirement and impact of power development under the peak carbon emissions in 2030[J]. Electric Power, 2016, 49(1): 174-177.
2 赵剑波, 王蕾. “十四五”构建以新能源为主体的新型电力系统[J]. 中国能源, 2021, 43(5): 17-21.
Zhao Jian-bo, Wang Lei. Research on the new power system during the "14th Five-Year" plan[J]. Energy of China, 2021, 43(5): 17-21.
3 贾巍, 雷才嘉, 葛磊蛟, 等. 城市配电网的国内外发展综述及技术展望[J]. 电力电容器与无功补偿, 2020, 41(1): 158-168.
Jia Wei, Lei Cai-jia, Ge Lei-jiao, et al. Overview on domestic and international development of urban distribution network and technical prospect[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(1): 158-168.
4 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69.
Shu Yin-biao, Chen Guo-ping, He Jing-bo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69.
5 马进, 赵大伟, 钱敏慧, 等. 大规模新能源接入弱同步支撑直流送端电网的运行控制技术综述[J]. 电网技术, 2017, 41(10): 3112-3120.
Ma Jin, Zhao Da-wei, Qian Min-hui, et al. Reviews of control technologies of large-scale renewable energy connected to weakly-synchronized sending-end dc power grid[J]. Power System Technology, 2017, 41(10): 3112-3120.
6 侯验秋, 丁一, 包铭磊, 等. 电-气耦合视角下德州大停电事故分析及对我国新型电力系统发展启示[J]. 中国电机工程学报, 2022, 42(21): 7764-7775.
Hou Yan-qiu, Ding Yi, Bao Ming-lei, et al. Analysisof texas blackout from the perspective of electricity-gas coupling and its enlightenment to the development of chinese new power system[J]. Proceedings of the CSEE, 2022, 42(21):7764-7775.
7 吴争荣, 王钢, 李海锋, 等. 计及逆变型分布式电源控制特性的配电网故障分析方法[J]. 电力系统自动化, 2012, 36(18): 92-96.
Wu Zheng-rong, Wang Gang, Li Hai-feng, et al. Fault characteristics analysis of distribution networks considering control scheme of inverter interfaced distributed generation[J]. Automation of Electric Power Systems, 2012, 36(18): 92-96.
8 刘洋, 王聪颖, 夏德明, 等. 电网故障导致大面积风电低电压穿越对电网频率的影响分析及措施[J]. 电网技术, 2021, 45(9): 3505-3514.
Liu Yang, Wang Cong-ying, Xia De-ming, et al. Influence of large area wind power low voltage ride-through on power grid frequency caused by power grid faults[J]. Power System Technology, 2021, 45(9): 3505-3514.
9 马苗苗, 邵黎阳, 刘向杰.分布式预测控制在微电网协调控制中的应用[J].吉林大学学报: 工学版, 2020, 50(6): 2258-2265.
Ma Miao-miao, Shao Li-yang, Liu Xiang-jie. Application of distributed predictive control in coordinated control of microgrid[J]. Journal of Jilin University (Engineering and Technology Edition). 2020, 50(6): 2258-2265.
10 Weng Y, Liao Y Z, Ram R. Distributed energy resources topology identification via graphical modeling[J]. IEEE Transactions on Power Systems, 2017, 32(4): 2682-2694.
11 董新洲, 汤涌, 卜广全, 等. 大型交直流混联电网安全运行面临的问题与挑战[J]. 中国电机工程学报, 2019, 39(11): 3107-3119.
Dong Xin-zhou, Tang Yong, Bu Guang-quan, et al. Confronting problem and challenge of large scale AC-DC hybrid power grid operation[J]. Proceedings of the CSEE, 2019, 39(11): 3107-3119.
12 裴宇婷, 秦超, 余贻鑫. 基于LightGBM和DNN的智能配电网在线拓扑辨识[J]. 天津大学学报: 自然科学与工程技术版, 2020, 53(9): 939-950.
Pei Yu-ting, Qin Chao, Yu Yi-xin. Online topology identification for smart distribution grids based on LightGBM and deep neural networks[J]. Journal of Tianjin University (Science and Technology), 2020, 53(9): 939-950.
13 杨秀, 蒋家富, 刘方, 等. 基于注意力机制和卷积神经网络的配电网拓扑辨识[J]. 电网技术, 2022, 46(5): 1672-1682.
Yang Xiu, Jiang Jia-fu, Liu Fang, et al. Distribution network topology identification based on attention mechanism and convolutional neural network[J]. Power System Technology, 2022, 46(5): 1672-1682.
14 Zhang J W, Wang Y, Weng Y, et al. Topology identification and line parameter estimation for Non-PMU distribution network: a numerical method[J]. IEEE Transactions on Smart Grid, 2020, 11(5): 4440-4453.
15 Zhang J W, Wang P, Zhang N. Distribution network admittance matrix estimation with linear regression[J]. IEEE Transactions on Power Systems, 2021, 36(5): 4896-4899.
16 何欣, 井天军, 田昀, 等. 基于支路有功功率的拓扑错误辨识方法[J]. 电子器件, 2020, 43(3): 505-510.
He Xin, Jing Tian-jun, Tian Yun, et al. Topology error identification method based on branches active power[J]. Chinese Journal of Electron Devices, 2020, 43(3): 505-510.
17 李虹, 张占龙, 高亚静. 一种配电网拓扑结构辨识方法的探讨[J]. 中国电力, 2015, 48(5): 133-138.
Li Hong, Zhang Zhan-long, Gao Ya-jing. Research and discussion on a method for topology identification of distribution system[J]. Electric Power, 2015, 48(5): 133-138.
18 罗群, 刘春雨, 顾强, 等. 基于最优匹配回路功率的配电网拓扑辨识方法[J]. 电测与仪表, 2019, 56(19): 1-6.
Luo Qun, Liu Chun-yu, Gu Qiang, et al. A topology identification method of distribution network based on optimal matching loop power[J]. Electrical Measurement & Instrumentation, 2019, 56(19): 1-6.
19 张艳军, 施毅斌, 周苏荃.新息图状态估计分块算法[J].哈尔滨工程大学学报, 2008, 29(11): 1166-1171.
Zhang Yan-jun, Shi Yi-bin, Zhou Su-quan. Partitioning algorithm for innovation graph state estimation[J]. Journal of Harbin Engineering University, 2008, 29(11): 1166-1171.
20 潘毓笙, 秦超.基于两阶段特征选择和格拉姆角场的配电网拓扑辨识方法[J].电力系统自动化, 2022, 46(16): 170-177.
Pan Yu-sheng, Qin Chao. Identification method for distribution network topology based on two-stage feature selection and gramian angular field[J]. Automation of Electric Power Systems, 2022, 46(16): 170-177.
21 Davide G, Hortensia A, Pablo L. A deep neural network approach for online topology identification in state estimation[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5824-5833.
22 Tian Z, Wu W C, Zhang B M. A mixed integer quadratic programming model for topology identification in distribution network[J]. IEEE Transactions on Power Systems, 2016, 31(1): 823-824.
23 Chen Y P, Fu Y T, Tan C, et al. Fault identification and reclosing technology for DG access to distribution network[C]∥4th International Conference on Intelligent Green Building and Smart Grid, Hubei, China, 2019: 466-470.
24 Qian C, Wang M Y, Gao D, et al. Topology identification method for primary distribution network with limited smart meter data[C]∥6th Asia Conference on Power and Electrical Engineering, Chongqing, China, 2021: 1611-1616.
25 周苏荃, 柳焯. 负荷突变与拓扑错误及坏数据三者交叠情况下的识别问题[J]. 中国电机工程学报, 2002, 22(6): 7-11.
Zhou Su-quan, Liu Zhuo. The identification of three simultaneous anormalies of sudden load change and topology error and bad data[J]. Proceedings of the CSEE, 2002, 22(6): 7-11.
26 杨志淳, 沈煜, 杨帆, 等. 基于数据关联分析的低压配电网拓扑识别方法[J]. 电测与仪表, 2020, 57(18): 5-11.
Yang Zhi-chun, Shen Yu, Yang Fan, et al. Topology identification method of low voltage distribution network based on data association analysis[J]. Electrical Measurement & Instrumentation, 2020, 57(18): 5-11.
27 任鹏哲, 刘友波, 刘挺坚, 等.基于互信息贝叶斯网络的配电网拓扑鲁棒辨识算法[J]. 电力系统自动化, 2021, 45(9): 55-62.
Ren Peng-zhe, Liu You-bo, Liu Ting-jian,et al. Robust identification algorithm for distribution network topology based on mutual-information Bayesian network[J]. Automation of Electric Power Systems, 2021, 45(9): 55-62.
28 孙伟, 朱世睿, 杨建平, 等.基于图卷积网络的微电网拓扑辨识[J].电力系统自动化, 2022, 46(5): 71-81.
Sun Wei, Zhu Shi-rui, Yang Jian-ping, et al. Topology identification of microgrid based on graph convolutional network[J]. Automation of Electric Power Systems, 2022, 46(5): 71-81.
29 郭帅文, 燕跃豪, 蒋建东, 等. 基于邻接矩阵的网络拓扑辨识算法[J]. 电力系统保护与控制, 2018, 46(12): 50-56.
Guo Shuai-wen, Yan Yue-hao, Jiang Jian-dong, et al. Network topology identification algorithm based on adjacency matrix[J]. Power System Protection and Control, 2018, 46(12): 50-56.
30 刘超, 王旭东, 苏彦卓, 等. 基于高级量测体系和图模型近邻估计的配电网拓扑辨识[J]. 济南大学学报: 自然科学版, 2020, 34(5): 527-532.
Liu Chao, Wang Xu-dong, Su Yan-zhuo, et al. Topology identification of distribution networks via advanced metering infrastructure and graphical model neighbor estimation[J]. Journal of University of Jinan (Science and Technology), 2020, 34(5): 527-532.
31 刘雯静, 杨军, 陈振宁, 等. 基于改进人工免疫网络的配电网单相接地故障辨识方法[J]. 科学技术与工程, 2021, 21(21): 8909-8915.
Liu Wen-jing, Yang Jun, Chen Zhen-ning, et al. Single phase earth fault identification method in distribution network based on improved artificial immune network[J]. Science Technology and Engineering, 2021, 21(21): 8909-8915.
32 田家辉, 梁栋, 葛磊蛟, 等. 面向高精度状态感知的配电系统微型同步相量测量单元优化配置[J]. 电网技术, 2019, 43(7): 2235-2242.
Tian Jia-hui, Liang Dong, Ge Lei-jiao, et al. Placement of micro-phasor measurement units in distribution systems for highly accurate state perception[J]. Power System Technology, 2019, 43(7): 2235-2242.
33 张慧芬, 张帆, 潘贞存. 基于注入信号法的配电网单相接地故障自动定位算法[J]. 电力自动化设备, 2008(6): 39-43.
Zhang Hui-fen, Zhang Fan, Pan Zhen-cun.Automatic fault locating algorithm based on signal injection method for distribution system[J]. Electric Power Automation Equipment, 2008(6): 39-43.
34 许栋梁, 赵健, 王小宇,等.基于有向邻接矩阵的配电网拓扑检测与识别[J].电力系统保护与控制,2021, 49(16): 76-85.
Xu Dong-liang, Zhao Jian, Wang Xiao-yu,et al.Distribution network topology detection and identification based on a directed adjacency matrix[J]. Power System Protection and Control, 2021, 49(16): 76-85.
35 陶华, 杨震, 张民, 等. 基于深度优先搜索算法的电力系统生成树的实现方法[J]. 电网技术, 2010, 34(2): 120-124.
Tao Hua, Yang Zhen, Zhang Min, et al. A depth-first search algorithm based implementation approach of spanning tree in power system[J]. Power System Technology, 2010, 34(2): 120-124.
36 贺宏锟, 史浩山.基于关联矩阵的网络拓扑辨识方法研究[J].西安交通大学学报, 2006, 40(4): 477-479.
He Hong-kun, Shi Hao-shan. Method for network topology identification based on incidence matrix[J]. Journal of Xi'an Jiaotong University, 2006, 40(4): 477-479.
37 杨冬锋, 周苏荃, 刘隽, 等. 基于关联矩阵化简的电网拓扑辨识新方法[J]. 华东电力, 2014, 42(11): 2254-2259.
Yang Dong-feng, Zhou Su-quan, Liu Juan, et al. A novel method for power grid topology identification based on incidence matrix simplification[J]. East China Electric Power, 2014, 42(11): 2254-2259.
38 Zhang S H, Yan Y H, Bao W, et al. Network topology identification algorithm based on adjacency matrix[C]∥IEEE Innovative Sm Yang Zhi-chun art Grid Technologies-Asia, Auckland, New Zealand, 2017: 1-5.
39 周苏荃, 柳焯. 新息图法拓扑错误辨识[J]. 电力系统自动化, 2000(4): 23-27.
Zhou Su-quan, Liu Zhuo. An innovation graph approach to topology error identification[J]. Automation of Electric Power Systems, 2000(4): 23-27.
40 钟建伟, 刘佳芳, 倪俊, 等. 改进新息图法在不良数据检测与辨识中的应用[J]. 电力系统及其自动化学报, 2018, 30(9): 83-88.
Zhong Jian-wei, Liu Jia-fang, Ni Jun, et al. Application of improved innovation graph method in detection and identification of bad data[J]. Proceedings of the CSU-EPSA, 2018, 30(9): 83-88.
41 Alireza N, Mohammad J, Andrew K. Reconciliation of measured and forecast data for topology identification in distribution systems[J]. IEEE Transactions on Power Delivery, 2022, 37(1): 176-186.
42 Li T, Chai W J, Wu D Q. Topology and impedance identification method of low-voltage distribution network based on smart meter measurements[J]. Frontiers in Energy Research, 2022, 10: 895397.
43 Lu C, Zhao L, Li Y H. Topology checking method for low voltage distribution network based on fuzzy c-means clustering algorithm[C]∥IEEE International Conference on Artificial Intelligence and Computer Applications, Dalian, China, 2020: 1077-1080.
44 Liu S, Zhou D H, Li K M, et al. Topology identification method of low-voltage distribution network based on regression analysis of voltage characteristic parameters[C]∥6th International Conference on Smart Grid and Electrical Automation, Kuming, China, 2021: 75-79.
45 Shi Z, Dong K, Zhao J F, et al. An improved statistical algorithm for topology identification and parameter estimation of low-voltage distribution grids[C]∥IEEE Sustainable Power and Energy Conference, Chengdu, China, 2020: 2500-2505.
46 Vinicius C C, Walmir F, Fernanda C L T,et al. Automated determination of topology and line parameters in low voltage systems using smart meters measurements[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 5028-5038.
47 Yang Z C, Shen Y, Yang F, et al. Topology identification method of low voltage distribution network based on data association analysis[C]∥5th Asia Conference on Power and Electrical Engineering, Chengdu, China, 2020: 2226-2230.
48 Li S T, Gao S F, Wu J B, et al. Research on topology identification of distribution network under the background of big data[C]∥IEEE 4th Conference on Energy Internet and Energy System Integration, Wuhan, China, 2020: 4294-4297.
49 Zhao J, Li L, Xu Z, et al. Full-scale distribution system topology identification using markov random field[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 4714-4726.
50 Hu X Z, Cong W, Zhang L Q, et al. Power supply network topology identification based on smart meter data[C]∥IEEE/IAS Industrial and Commercial Power System Asia, Chengdu, China, 2021: 1484-1489.
51 彭生刚, 李吉德.基于Apriori算法的网络拓扑辨识方法[J].山东电力高等专科学校学报, 2011, 14(6):5-7.
Peng Sheng-gang, Li Ji-de. A network topology identification based on apriori method[J]. Journal of Shandong Electric Power College, 2011, 14(6): 5-7.
52 高泽璞, 赵云, 余伊兰, 等. 基于知识图谱的低压配电网拓扑结构辨识方法[J]. 电力系统保护与控制, 2020, 48(2): 34-43.
Gao Ze-pu, Zhao Yun, Yu Yi-lan, et al. Low-voltage distribution network topology identification method based on knowledge graph[J]. Power System Protection and Control, 2020, 48(2): 34-43.
53 Satya J P, Nirav B, Ramkrishna P, et al. Identifying topology of low voltage distribution networks based on smart meter data[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5113-5122.
54 Xu C, Lei Y, Zou Y H. A method of low voltage topology identification[C]∥IEEE Conference on Telecommunications, Optics and Computer Science, Shenyang, China, 2020: 318-323.
55 张磐, 高强伟, 黄旭, 等. 基于电力载波通信的低压配电网拓扑结构辨识方法[J]. 电子器件, 2021, 44(1): 162-167.
Zhang Pan, Gao Qiang-wei, Huang Xu, et al. Low-voltage distribution network topology identification method based on power carrier communication[J]. Chinese Journal of Electron Devices, 2021, 44(1): 162-167.
56 Mei R, Yu K, Chen X Y. Topology identification in distribution network based on power injection measurements[C]∥2nd International Conference on Power and Renewable Energy, Chengdu, China, 2017: 477-484.
57 刘超, 杨扬, 梁栋, 等. 基于AMI潮流匹配的中压配电网两阶段拓扑辨识[J]. 电力系统及其自动化学报, 2020, 32(3): 123-128.
Liu Chao, Yang Yang, Liang Dong, et al.Two-stage topology identification of medium-voltage distribution networks based on power flow matching of AMI measurements[J].Proceedings of the CSU-EPSA, 2020, 32(3): 123-128.
58 Mohammad F, Alireza S, Hamed M R. Topology identification in distribution systems using line current sensors: an MILP approach[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1159-1170.
59 Zhao Y, Chen J S, Vincent Poor H. Efficient neural network architecture for topology identification in smart grid[C]∥IEEE Global Conference on Signal and Information Processing, Washington, USA, 2016: 811-815.
60 Christopher W A, Liao Y. Electric transmission system fault identification using artificial neural networks[C]∥Clemson University Power Systems Conference, Clemson, USA, 2019: 1-6.
61 杨华, 李喜旺, 司志坚, 等.基于图神经网络的配电网故障预测[J].计算机系统应用, 2020, 29(9): 131-135.
Yang Hua, Li Xi-wang, Si Zhi-jian, et al. Accident prediction of power distribution network based on graph neural network[J]. Computer Systems & Applications, 2020, 29(9): 131-135.
62 Li Y F, Wang S Y, Li L, et al. Artificial intelligence for real-time topology identification in power distribution systems[C]∥52nd North American Power Symposium, Tempe, USA, 2021: 1-6.
63 Mohammad J, Alireza S, Andrew K. Distribution system topology identification for der management systems using deep neural networks[C]∥IEEE Power & Energy Society General Meeting, Montreal, Canada, 2020: 1-5.
64 Wu H Y, Zhao X, Jian Z, et al.Gridtopo-gan for distribution system topology identification[J/OL] [2022-5-20].
65 徐瑞东, 常仲学, 宋国兵, 等. 注入探测信号的直流配电网接地故障识别方法[J]. 电网技术, 2021, 45(11): 4269-4277.
Xu Rui-dong, Chang Zhong-xue, Song Guo-bing,et al.Grounding fault identification method for DC distribution network based on detection signal injection[J].Power System Technology, 2021, 45(11): 4269-4277.
66 戚振彪, 凌松, 刘文烨, 等. 基于高频测试信号注入的配电网故障节点在线识别方法[J]. 电力系统保护与控制, 2020, 48(4): 110-117.
Qi Zhen-biao, Ling Song, Liu Wen-ye, et al. On-line fault node identification method for distribution network based on high frequency test signal injection[J]. Power System Protection and Control, 2020, 48(4): 110-117.
67 潘旭, 王金丽, 赵晓龙, 等. 智能配电网多维数据质量评价方法[J]. 中国电机工程学报, 2018, 38(5): 1375-1384.
Pan Xu, Wang Jin-li, Zhao Xiao-long, et al. Multi- dimensional data quality evaluation method for intelligent distribution network[J]. Proceedings of the CSEE, 2018, 38(5): 1375-1384.
68 费思源. 大数据技术在配电网中的应用综述[J]. 中国电机工程学报, 2018, 38(1): 85-96.
Fei Si-yuan. Overview of application of big data technology in power distribution system[J]. Proceedings of the CSEE, 2018, 38(1): 85-96.
69 苗新, 张东霞, 孙德栋.在配电网中应用大数据的机遇与挑战[J]. 电网技术, 2015, 39(11): 3122-3127.
Miao Xin, Zhang Dong-xia, Sun De-dong. The opportunity and challenge of big data's application in power distribution networks[J]. Power System Technology, 2015, 39(11): 3122-3127.
70 杨帆, 夏荣立, 杨威.碳达峰、碳中和背景下新能源发展趋势研究[J].中国工程咨询, 2021(9): 22-26.
Yang Fan, Xia Rong-li, Yang Wei. Research on the development trend of new energy under the background of carbon peak and carbon neutralization[J].China Engineering Consultants, 2021(9): 22-26.
71 郝素利, 石芬芬.标准化、科技创新与新能源发展的关系研究[J]. 科技管理研究, 2020, 40(1): 167-174.
Hao Su-li, Shi Fen-fen. Research on the relationship of standardization, technological innovation and new energy development[J].Science and Technology Management Research, 2020, 40(1): 167-174.
72 马苗苗, 刘立成, 王鑫,等.风光发电与新能源汽车协同优化调度策略[J]. 吉林大学学报:工学版, 2022,52(9): 2096-2106.
Ma Miao-Miao, Liu Li-Cheng, Wang Xin, et al.Coordinated optimal dispatch strategy of wind and photo voltaic power generation and new energy vehicles[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 2096-2106.
73 张宏霞, 张衍杰, 马茜, 等. “双碳”目标下新能源产业发展趋势[J]. 储能科学与技术, 2022, 11(5): 1677-1678.
Zhang Hong-xia, Zhang Yan-jie, Ma Qian, et al.The development trend of new energy industry under the goal of "carbon peak carbon neutrality"[J]. Energy Storage Science and Technology, 2022, 11(5): 1677-1678.
74 马钊, 安婷, 尚宇炜.国内外配电前沿技术动态及发展[J].中国电机工程学报, 2016, 36(6): 1552-1567.
Ma Zhao, An Ting, Shang Yu-wei. State of the art and development trends of power distribution technologies[J]. Proceedings of the CSEE, 2016, 36(6): 1552-1567.
75 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
Li Hui, Liu Dong, Yao Dan-yang.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
76 祁琪, 姜齐荣, 许彦平. 智能配电网柔性互联研究现状及发展趋势[J]. 电网技术, 2020, 44(12): 4664-4676.
Qi Qi, Jiang Qi-rong, Xu Yan-ping. Research status and development prospect of flexible interconnection for smart distribution networks[J]. Power System Technology, 2020, 44(12): 4664-4676.
77 宋可荐, 吴命利, 杨少兵, 等. 我国电气化铁路高次谐波谐振问题研究综述[J]. 铁道学报, 2021, 43(1): 64-76.
Song Ke-jian, Wu Ming-li, Yang Shao-bing, et al. Review of high-order harmonic resonances of electric railways in china[J]. Journal of the China Railway Society, 2021, 43(1): 64-76.
[1] Ming-xing TIAN,Tian-ge WANG,Hui-ying ZHANG,Lu YIN. Overview and prospect of controllable reactor [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 328-345.
[2] CHEN Song-li, TIAN De, SUN Yun-feng, XIN Hai-sheng, HAN Qiao-li. Matching for wind-solar hybrid power system for off-net household [J]. , 2012, 42(04): 882-886.
[3] ZHANG Yu, ZHU Qi-dan| DAI Tian-hong, MU Li-xin. Intelligent control for marine power system [J]. 吉林大学学报(工学版), 2011, 41(01): 221-0225.
[4] SUN Yong, LI Zhi-Min, YU Ji-Lai. Design of reducedorder power system stabilizer based on minimum entropy H&infin|theory [J]. 吉林大学学报(工学版), 2010, 40(02): 523-0528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[3] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[4] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Tang Xin-xing,Zhao Ding-xuan,Huang Hai-dong,Ai Xue-zhong,Feng Shi-zhu . Modified stereo vision calibration method for construction robot
[J]. 吉林大学学报(工学版), 2007, 37(02): 391 -0395 .
[10] Zhou Jian-ming, Gao Xiao-wei, Fei Yuan-chun . New modeling of SRD and its application in short pulse generation circuit[J]. 吉林大学学报(工学版), 2007, 37(01): 173 -176 .