Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (2): 328-345.doi: 10.13229/j.cnki.jdxbgxb20211428

Previous Articles     Next Articles

Overview and prospect of controllable reactor

Ming-xing TIAN1,2(),Tian-ge WANG1,2,3,Hui-ying ZHANG1,2,Lu YIN1,2   

  1. 1.School of Automation & Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.Gansu Province Engineering Laboratory for Rail Transit Electrical Automation,Lanzhou Jiaotong University,Lanzhou 730070,China
    3.School of Railway Power,Shaanxi Railway Institute,Weinan 714000,China
  • Received:2021-12-25 Online:2023-02-01 Published:2023-02-28

Abstract:

This paper introduces the research status of controllable reactor by consulting literatures, analyzes the regulation principle of controllable reactor and points out the realization mode of controllable compensation capacity of reactor. Based on this, Aiming at the problems of various structures and different names of the existing reactors, more than 20 kinds of controllable reactors are classified from the perspective of the working principle of controllable reactors. The characteristics of each type of controllable reactors are summarized. And a comparative analysis of controllable reactors is made from the control accuracy, response speed, harmonic content and other aspects. Finally, the development of controllable reactor is prospected. The results show that, according to the regulation principle of controllable reactor, controllable reactor can be divided into two types: mechanical controllable reactor and magnetic adjustable controllable reactor. Magnetic controllable reactor has obvious advantages and good practical value; besides, the DC magnetic controllable reactor has the characteristics of small capacity control, which is widely used. The future development of controllable reactor can focus on six aspects: magnetization characteristics, intelligent protection and control, controllable reactor-transformer magnetic integrated equipment, et al.

Key words: power system, controllable reactor, regulation mechanism, AC/DC magnetization, classification and comparison

CLC Number: 

  • TM47

Fig.1

Inductance diagram"

Fig.2

Magnetization curve and permeability of ferromagnetic materials"

Fig.3

Classification of controllable reactor"

Fig.4

Structure principle diagram of magnetically-saturated controllable reactor"

Fig.5

Structure principle diagram of magnetic-valve controllable reactor"

Fig.6

Structure principle diagram of multi-stage saturable magnetic-valve controllable reactor"

Fig.7

Basic model of orthogonal magnetization controllable reactor"

Fig.8

Structure principle diagram of orthogonal magnetization controllable reactor"

Fig.9

Working principle diagram of multi control winding controllable reactor of transformer type"

Fig.10

Typical structure diagram of multi control winding controllable reactor of transformer type"

Fig.11

Typical structure diagram of high leakage-reactance superconducting controllable reactor"

Fig.12

Typical structure diagram of saturated-core superconducting controllable reactor"

Fig.13

Typical structure diagram of controllable reactor based on magnetic state regulation mechanism"

Table 1

Comparative analysis of different types of controllable reactors"

评价指标机械式可控电抗器调磁式可控电控器
助磁式可控电抗器新型材料可控电抗器
直流助磁式交流助磁式超导可控电抗器纳米复合材料可控电抗器
高漏抗式饱和铁芯式正交耦合式
结构复杂度简单复杂简单简单较复杂复杂复杂
成本本体成本较低较高
控制成本
设备损耗较低较低较低较低
谐波含量较高
响应速度较慢
控制精度
控制复杂度简单较简单复杂复杂较简单较简单较复杂
可靠性较高
应用领域主要用作消弧线圈

超/特高压、大容量输电线路、电气化铁路的动态无功补偿,

风光电厂、煤矿冶金厂的大型设备电压控制

应用情况已逐渐淘汰最广泛较广泛暂未投入使用

Fig.14

Research prospect of controllable reactor"

1 薛雨. 光热电站接入下新能源高渗透区域电网的优化调度研究[D]. 西安: 西安理工大学电气工程学院, 2020.
Xue Yu. Research on optimal dispatching of new energy grid in high-permeability area under the connection of thermal power station[D]. Xi'an: School of Electrical Engineering, Xi'an University of Technology, 2020.
2 郑玲, 陈毅波, 姚建刚."节能减排"政策下的分布式电源优化规划[J]. 电力系统及其自动化学报, 2018, 30(12): 73-77.
Zheng Ling, Zheng Yi-bo, Yao Jian-gang. Optimal planning of distributed generations under the policy of energy conservation and emission reduction[J]. Proceedings of the CSU-EPSA, 2018, 30(12): 73-77.
3 王春亮, 宋艺航.中国电力资源供需区域分布与输送状况[J]. 电网与清洁能源, 2015, 31(1): 69-74.
Wang Chun-liang, Song Yi-hang. Distribution of power resource demand and supply regions and power transmission in china[J]. Power System and Clean Energy, 2015, 31(1): 69-74.
4 顾生杰, 党建武, 田铭兴, 等.长距离输电线路并联电抗器布置对功率传输的影响[J]. 高电压技术, 2014, 40(11): 3612-3617.
Gu Sheng-jie, Dang Jian-wu, Tian Ming-xin,et al. Effect of shunt reactor placement on power transfer in long transmission lines[J]. High Voltage Engineering, 2014, 40(11): 3612-3617.
5 郑涛, 赵彦杰, 金颖.特高压磁控式并联电抗器保护配置方案及其性能分析[J]. 电网技术, 2014, 38(5): 1396-1401.
Zheng Tao, Zhao Yan-jie, Jin Ying.Research on protective configuration for a UHV magnetically controlled shunt reactor[J]. Power System Technology, 2014, 8(5): 1396-1401.
6 周浩, 钟一俊.特高压交、直流输电的适用场合及其技术比较[J]. 电力自动化设备, 2007, 27(5): 6-12.
Zhou Hao, Zhong Yi-jun. Applicable occasions of UHVAC/UHVDC transmission and their technology comparisons in China[J]. Electric Power Automation Equipment, 2007, 27(5): 6-12.
7 刘玉琦, 王丹, 彭周华,等.采用扰动观测器的SVG直接电流反步控制[J]. 电力系统及其自动化学报, 2021, 33(6): 15-21.
Liu Yu-qi, Wang Dan, Peng Zhou-hua, et al. Direct current backstepping control of SVG with disturbance observer[J]. Proceedings of the CSU-EPSA, 2021, 33(6): 15-21.
8 高宗和, 滕贤亮, 张小白.适应大规模风电接入的互联电网有功调度与控制方案[J]. 电力系统自动化, 2010, 34(17): 37-41.
Gao Zong-he, Teng Xian-liang, Zhang Xiao-bai.Solution of active power dispatch and control scheme for interconnected power grids with large-scale wind power integration[J]. Automation of Electric Power Systems, 2010, 34(17): 37-41.
9 郑涛, 赵彦杰.超/特高压可控并联电抗器关键技术综述[J]. 电力系统自动化, 2014(7): 127-135.
Zheng Tao, Zhao Yan-jie.Overview of key techniques of EHV/UHV controllable shunt reactor[J].Automation of Electric Power Systems, 2014(7): 127-135.
10 Feshin A, Chudny V S, Belyaev A N. Transient stability of oil-field isolated power systems with magnetically controlled shunt reactors[C]∥IEEE Nw Russia Young Researchers in Electrical & Electronic Engineering Conference, Petersburg, Russia, 2016: 15919502.
11 Bazylev B I, Bryantsev M A, DyagilevaS V, et al. A source of reactive power at a 35kV substation of the vankor oilfield[J]. Russian Electrical Engineering, 2012, 83(3): 176-178.
12 王青朋, 白保东, 陈德志,等.800 kV超高压磁饱和可控电抗器的动态特性分析及谐波抑制[J]. 电工技术学报, 2020, 35(): 235-242.
Wang Qing-peng, Bai Bao-dong, Chen Dez-hi,et al. Dynamic characteristics and harmonic suppression of 800 kv extra-high voltage magnetically saturation controlled reactor[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 235-242.
13 肖义平.基于功率变换的可变电抗器研究[D].武汉: 武汉理工大学自动化学院, 2008.
Xiao Yi-ping. Research on variable reactor based on power conversion[D].Wuhan: School of Automation,Wuhan University of Technology, 2008.
14 谭文利, 周腊吾, 龚筱琦, 等.带分接的可控电抗器结构优化设计研究[J]. 变压器, 2019, 56(7): 9-14.
Tan Wen-li, Zhou La-wu, Gong Xiao-qi, et al. Structural optimization design of controllable reactor with tapping[J]. Transformer, 2019, 56(7): 9-14.
15 聂湃昌.10 kV电气化铁路信号灯系统并联数字电抗器的研究[D]. 哈尔滨: 哈尔滨理工大学电气与电子工程学院, 2014.
Nie Pai-chang. Research on parallel digital reactor of 10 kv electrified railway signal light system[D]. Harbin: School of Electrical and Electronic Engineering, Harbin University of Science and Technology, 2014.
16 Liu W Y, Luo L F, Dong S D,et al. Overview of power controllable reactor technology[J]. Energy Procedia, 2012, 17: 483-491.
17 张健华, 张春梅, 黄兆.新型SVC动态无功补偿系统的设计及其应用[J].高压电器, 2014, 50(10): 78-84.
Zhang Jian-hua, Zhang Chun-mei, Huang Zhao. Design and application of new SVC compensation[J]. High-Voltage Apparatus, 2014, 50(10): 78-84.
18 李崇.基于双可控电抗器的双调谐滤波器研究[D].南京: 南京理工大学电子工程与光电技术学院, 2007.
Li Chong. Research on double-tuned filter based on double-controllable reactor[D]. Nanjing: School of Electrical Optical Engineering, Nanjing University of Science Technology, 2007.
19 倪常茂,刘振兴.基于双调谐滤波器和TSC的混合型无功补偿滤波装置[J]. 电力自动化设备, 2012, 32(7): 124-128.
Ni Chang-mao, Liu Zhen-xing.Hybrid reactive power compensation and filtering device based on dual tuning filter and TSC[J]. Electric Power Automation Equipment, 2012, 32(7): 124-128.
20 谭真, 罗隆福, 崔贵平,等.耦合可控电抗器的统一电能质量控制器[J]. 电力自动化设备, 2020, 40(1): 101-105.
Tan Zhen, Luo Long-fu, Cui Gui-ping,et al.UPQC with coupled controllable reactors[J]. Electric Power Automation Equipment, 2020, 40(1): 101-105.
21 Mehmet T, Tuğçe D, Selva B, et al. A review of magnetically controlled shunt reactor for power quality improvement with renewable energy applications[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 215-228.
22 田铭兴, 杨秀川, 杨雪凇.基于MATLAB多绕组变压器模型的磁饱和式可控电抗器仿真建模方法[J]. 电力自动化设备, 2014, 34(3): 78-81, 88.
Tian Ming-xing, Yang Xiu-chuan, Yang Xue-song. Modeling of magnetically saturation controllable reactor based on multi-winding transformer models of MATLAB[J]. Electric Power Automation Equipment, 2014, 34(3): 78-81, 88.
23 张健康, 粟小华, 胡勇, 等.大容量可控电抗器对线路差动保护的影响及解决措施[J]. 电力系统自动化, 2014, 38(1): 115-120.
Zhang Jian-kang, Su Xiao-hua, Hu Yong, et al. Impact of large-capacity controllable shunt reactor on line differential protection and solution[J].Automation of Electric Power Systems, 2014, 38(1): 115-120.
24 田铭兴, 陈华泰, 杨秀川, 等. 基于饱和变压器的磁饱和式可控电抗器分析[J]. 电源技术, 2016, 40(3):705-708.
Tian Ming-xing, Chen Hua-tai, Yang Xiu-chuan,et al. Analysis of magnetically-saturated controllable reactor based on saturation transformer[J].Chinese Journal of Power Sources, 2016, 40(3): 705-708.
25 陈华泰, 田铭兴, 高国花. 磁饱和式和变压器式可控电抗器应用比较分析[J]. 电源技术, 2013, 37(5): 821-824.
Chen Hua-tai, Tian Ming-xing, Gao Guo-hua. Comparative analysis of magnetic saturation type and transformer type controllable reactor application[J]. Chinese Journal of Power Sources, 2013, 37(5): 821-824.
26 陈柏超.新型饱和可控电抗器理论及应用[M].武汉:水利水电大学出版社,1999.
27 顾生杰, 田铭兴. 变压器式可控电抗器的研究与发展[J]. 高压电器, 2014, 50(1): 20-25.
Gu Sheng-jie, Tian Ming-xing. Review of controllable reactor of transformer type[J]. High-Voltage Apparatus, 2014, 50(1): 20-25.
28 顾生杰, 田铭兴. 带谐波补偿绕组的变压器式可控电抗器的容性无功补偿性质分析[J]. 电工电能新技术, 2014, 33(6): 41-46.
Gu Sheng-jie, Tian Ming-xing. Analysis on capacitive reactive power compensation of controlled reactor of transformer type with harmonic-compensation winding[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(6): 41-46.
29 杨光. 高阻抗变压器型可控并联电抗器电磁特性研究[D]. 北京: 华北电力大学电气与电子工程学院, 2018.
Yang Guang. Research on electromagnetic characteristics of high impedance controlled shunt reactor of transformer type[D]. Beijing: School of Electrical and Electronic Engineering, North China Electric Power University, 2018.
30 田铭兴. 变压器式可控电抗器的基本理论研究[D]. 西安: 西安交通大学电气工程学院, 2005.
Tian Ming-xing. Basic theoretical research on controllable reactors of transformer type[D]. Xi'an:School of Electrical Engineering, Xi'an Jiaotong University, 2005.
31 田铭兴, 励庆孚.变压器式可控电抗器的磁场和参数计算[J].西安交通大学学报, 2005, 39(6): 656-658.
Tian Ming-xing, Li Qing-fu.Calculation of magnetic flux and parameters of reactor of transformer type[J]. Journal of Xi'an Jiaotong University, 2005, 39(6): 656-658.
32 王田戈, 田铭兴, 张有绮.基于磁路的变压器式可控电抗器漏磁场计算[J].变压器, 2018, 55(2): 5-9.
Wang Tian-ge, Tian Ming-xing, Zhang You-qi. Leakage magnetic field calculation of controllable reactor of transformer type based on magnetic-circuit[J]. Transformer, 2018, 55(2): 5-9.
33 柳轶彬.变压器式可控电抗器的调节模式及其控制策略研究[D]. 兰州: 兰州交通大学自动化与电气工程学院, 2015.
Liu Yi-bin. Study on regulating mode and control strategy of controllable reactor of transformer type [D]. Lanzhou: School of Automation and Electrical Engineering, Lanzhou Jiaotong Univesity, 2015.
34 张慧英, 田铭兴, 李进.变压器式可控电抗器的控制特性和谐波特性[J].高压电器, 2020, 56(4): 118-124.
Zhang Hui-ying, Tian Ming-xing, Li Jin. Control characteristics and harmonic characteristics of controllable reactor of transformer type[J]. High Voltage Apparatus, 2020, 56(4): 118-124.
35 龚岩. 变压器式可控电抗器损耗与温升研究[D]. 兰州: 兰州交通大学自动化与电气工程学院, 2016.
Gong Yan. Research on the loss and temperature rise of a controllable reactor of transformer type[D]. Lanzhou: School of Automation and Electrical Engineering, Lanzhou Jiaotong University, 2016.
36 田铭兴, 尹健宁, 柳轶彬. 等 . 基于磁集成技术的变压器式可控电抗器的结构设计与分析[J]. 高电压技术, 2014, 40(10): 3141-3149.
Tian Ming-xing, Yin Jian-ning, Liu Yi-bin, et al. Structure design and analysis of controllable reactor of transformer type based on magnetic integration technology[J]. High Voltage Engineering, 2014, 40(10): 3141-3149.
37 Yin J N, Tian M X. Simulation analysis for controllable reactor of transformer type with multifold magnetic materials integration[J]. WSEAS Transactions on Circuits and Systems, 2014, 13: 336-342.
38 尹健宁, 田铭兴, 柳轶彬.变压器式可控电抗器磁集成结构设计与仿真分析[J].电网技术, 2014, 38(11): 3236-3241.
Yi Jian-ning, Tian Ming-xing, Liu Yi-bin.Design and simulation analysis on magnetic integrated structure of controllable reactor of transformer type[J].Power System Technology, 2014, 38(11): 3236-3241.
39 付鹏宇, 田铭兴, 张宁.变压器式可控电抗器结构设计与仿真分析[J].高压电器, 2018, 54(5): 242-247.
Fu Peng-yu, Tian Ming-xing, Zhang Ning. Structure design and simulation analysis of controllable reactor of transformer type[J]. High Voltage Apparatus,2018, 54(5): 242-247.
40 王田戈, 田铭兴, 张慧英, 等.变压器式可控电抗器的新型磁集成结构分析[J].高电压技术, 2018, 44(10): 3333-3339.
Wang Tian-ge, Tian Ming-xing, Zhang Hui-ying, et al. Analysis of new-type magnetic integrated structure for controllable reactor of transformer type[J].High Voltage Engineering, 2018, 44(10): 3333-3339.
41 田铭兴, 王田戈, 马长立, 等.磁集成结构变压器式可控电抗器的对比分析及设计[J]. 电力自动化设备, 2018, 38(10): 197-202, 210.
Tian Ming-xing, Wang Tian-ge, Ma Chang-li,et al. Comparative analysis and design of CRT with magnetic integrated structures[J], Electric Power Automation Equipment, 2018, 38(10): 197-202, 210.
42 张毅. 超导可控电抗器工作原理及样机方案仿真分析研究[D]. 昆明: 昆明理工大学电力工程学院, 2013.
Zhang Yi. Research on working principle and prototype scheme simulation of superconducting controllable reactor[D]. Kunming: School of Electric Power Engineering, Kunming University of Science and Technology, 2013.
43 王作帅, 任丽, 严思念, 等.高温超导可控电抗器研究进展[J].电工电能新技术, 2017, 36(10): 38-45, 54.
Wang Zuo-shuai, Ren Li, Yan Si-nian, et al.Research progress of high temperature superconducting controllable reactor[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(10): 38-45, 54.
44 董洪达.380 V超导电抗器的研发[D]. 武汉: 华中科技大学电气与电子工程学院, 2014.
Dong Hong-da. Research and development of 380 V superconducting reactor[D]. Wuhan: School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 2014.
45 宋萌, 杨鑫, 胡南南, 等.高漏抗式超导可控电抗器的设计和样机实验[J]. 低温物理学报, 2016, 38(2): 139-144.
Song Meng, Yang Xin, Hu Nan-nan, et al. Characteristic analysis and experiment of a high leakage reactance transformer-based HTS controllable reactor[J]. Chinese Journal of Low Temperature Physics, 2016, 38(2): 139-144.
46 张毅, 宋萌, 曹昆南, 等.高漏抗超导可控电抗器工作原理仿真分析[J].低温物理学报, 2013, 35(1): 75-80.
Zhang Yi, Song Meng, Cao Kun-nan, et al. Simulink analysis for the working principle of superconduction high leakage reactance controllable reactor[J]. Chinese Journal of Low Temperature Physics, 2013, 35(1): 75-80.
47 孙彬, 余长厅, 宋萌, 等. 超导可控电抗器暂态特性研究[J]. 武汉大学学报: 工学版, 2015, 48(4): 489-494, 501.
Sun Bin, Yu Zhang-ting, Song Meng,et al.Research on transient characteristics of superconducting controllable reactor[J]. Engineering Journal of Wuhan University, 2015, 48(4): 489-494, 501.
48 沈石峰. 高温超导可控电抗器电磁特性研究及其超导线圈的电磁、低温设计[D]. 武汉: 华中科技大学电气与电子工程学院, 2016.
Shen Shi-feng. Research of electromagnetic performance of high temperature superconductivity controllable reactor(HTS-CR) and the electromagnetic design and cryogenic design of HTS-CR winding[D]. Wuhan: School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 2016.
49 王斐宏.饱和铁芯型超导可控电抗器的输电技术应用研究[D].昆明: 昆明理工大学电力工程学院, 2014.
Wang Fei-hong. Application research on power transmission technology of saturated superconducting controllable reactor[D]. Kunming: School of Electric Power Engineering, Kunming University of Science and Technology, 2014.
50 王作帅. 正交磁通耦合高温超导可控电抗器特性分析及优化方法研究[D]. 武汉: 华中科技大学电气与电子工程学院, 2018.
Wang Zuo-shuai. Study on the characteristic analysis and optimization method of the orthogonal magnetic flux coupled high temperature superconductivity controllable reactor[D]. Wuhan: School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 2018.
51 孔令齐. 基于ANSYS的正交磁化可控电抗器电磁场数值计算研究[D]. 北京: 北方工业大学机电工程学院, 2013.
Kong Ling-qi. Research on electromagnetic field numerical calculation of orthogonal magnetized controllable reactor based on ANSYS[D]. Bejing: College of Mechanical and Electrical Engineering, North China University of Technology, 2013.
52 朱宝森, 关毅, 陈庆国, 等. 正交磁化可控电抗器的设计与特性分析[J]. 电机与控制学报, 2012, 16(5): 26-32.
Zhu Bao-sen, Guan Yi, Chen Qing-guo, et al. Design and characteristics analysis of orthogonal magnetization controllable reactor[J]. Electric Machines and Control, 2012, 16(5): 26-32.
53 关毅. 正交磁化式可控电抗器设计[D]. 哈尔滨: 哈尔滨理工大学电气与电子工程学院, 2012.
Guan Yi. The development on orthogonal magnetization controllable reactor[D]. Harbin: School of Electrical and Electronic Engineering, Harbin University of Science and Technology, 2012.
54 孙元达. 新结构正交磁控电抗器的设计与分析[D]. 徐州: 中国矿业大学电气与动力工程学院, 2019.
Sun Yuan-da. Design and analysis of a new orthogonal magnetic saturation controllable reactor[D]. Xuzhou: School of Electrical and Power Engineering, China University of Mining and Technology, 2019.
55 赵彤. 正交磁化可控电抗器的建模与场分布计算[D]. 北京: 北方工业大学机电工程学院, 2016.
Zhao Tong. The modeling and the calculation of field distribution on orthogonal magnetization controlled reactor[D]. Bejing: College of Mechanical and Electrical Engineering, North China University of Technology, 2016.
56 Yuan J X, Zheng X F, Chen F. Analysis and optimized design of a novel compact orthogonal controllable reactor[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4527-4538.
57 陈绪轩, 田翠华, 陈柏超, 等. 多级饱和磁阀式可控电抗器谐波分析数学模型[J]. 电工技术学报, 2011, 26(3): 57-64.
Chen Xu-xuan, Tian Cui-hua, Chen Bai-chao,et al. Mathematical model for harmonics analysis of the multi-stage saturable magnetic-valve controllable reactor[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 57-64.
58 田铭兴, 石鹏太, 马亚珍.n级饱和磁阀式可控电抗器结构特性和仿真方法[J]. 电力自动化设备, 2016, 36(2): 95-101.
Tian Ming-xing, Shi Peng-tai, Ma Ya-zhen. Structural property and simulation method of n-stage saturable magnetic-valve controllable reactor[J]. Electric Power Automation Equipment, 2016, 36(2): 95-101.
59 张素丽, 王建赜, 牟宪民, 等. 新型低谐波直流可控电抗器[J]. 电力系统及其自动化学报, 2008(1): 117-120, 128.
Zhang Su-li, Wang Jian-ze, Mu Xian-min, et al. Novel harmonic free DC controllable reactor[J]. Proceedings of the CSU-EPSA, 2008(1): 117-120, 128.
60 牟宪民, 王建赜, 胡泰, 等.新型单相低谐波饱和式可控电抗器[J]. 电力自动化设备, 2007(7): 17-21.
Mu Xian-min, Wang Jian-ze, Hu Tai, et al. Single phase low harmollics saturated controllable reactor[J]. Electric Power Automation Equipment, 2007(7): 17-21.
61 陈志伟, 白保东, 于江华, 等.基于变感式电抗器的矢量控制系统谐波抑制技术研究[J]. 电工技术学报, 2015, 30(12): 284-290.
Chen Zhi-wei, Bai Bao-dong, Yu Jiang-hua, et al. The research of vector control system harmonic suppression technology based on variable-inductance reactor[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 284-290.
62 陈修延, 戴谦, 韩冬竹.新型固调式磁控电抗器在铁路贯通电力线路中的应用[J]. 铁道机车车辆, 2012, 32(5): 92-95.
Chen Xiu-yan, Dai Qian, Han Dong-zhu. Application of new type magnetic-valve controllable reactor in the railway continous transmission lines[J]. Railway Locomotive & Car, 2012, 32(5): 92-95.
63 孙振坤.基于磁通补偿可控电抗器的滤波装置研究[D].北京: 北方工业大学电气与控制工程学院, 2019.
Sun Zhen-kun. Research on filter device based on flux cmpensation controllable reactor[D]. Bejing: School of Electrical and Control Engineering, North China University of Technology, 2019.
64 李华峰, 李苏楠, 张本锋.压电作动器用无源可控电抗器及其动态补偿系统[J]. 中国电机工程学报, 2015, 35(5): 1237-1242.
Li Hua-feng, Li Su-nan, Zhang Ben-feng.A dynamic compensation system of passive controllable reactor for piezoelectric actuator[J]. Proceedings of the CSEE, 2015, 35(5): 1237-1242.
65 汤中曦.混合控制型电抗器无功补偿装置的研究[D].淮南: 安徽理工大学电气与信息工程学院, 2017.
Tang Zhong-xi. The research of hybrid control type reactor reactive power compensation device[D]. Huainan: School of Electrical and Information Engineering, Anhui University of Science and Technology, 2017.
66 安振, 陈志伟, 白保东, 等.基于磁状态调节机制的可控电抗器分析设计[J]. 电工技术学报, 2017, 32(20): 213-221.
An Zhen, Chen Zhi-wei, Bai Bao-dong, et al. A novel controllable reactor design and analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 213-221.
67 智静, 田颢亮. TCT变压器式可控电抗器的设计和关键问题分析[J]. 变压器, 2016, 53(12): 7-11.
Zhi Jing, Tian Hao-liang. Design and key problem analysis of TCT transformer type controllable reactor[J]. Transformer, 2016, 53(12): 7-11.
68 田铭兴. 多并联支路型可控电抗器工作模式[J]. 电工技术学报, 2006(12): 21-25.
Tian Ming-xing. Operation mode of a controllable reactor with multiple parallel branches[J]. Transactions of China Electrotechnical Society, 2006(12): 21-25.
69 田铭兴, 杨秀川, 原东昇.多并联支路型可控电抗器短路电抗对支路电抗和电流的影响[J]. 电工技术学报, 2014, 29(7): 237-243.
Tian Ming-xing, Yang Xiu-chuan, Yuan Dong-sheng. Short-circuit reactances of a controllable reactor of multi-parallel branch type's influence on its branch reactances and currents[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 237-243.
70 蒋大鹏. 适用于超高压的可控电抗器建模与仿真研究[D]. 北京: 华北电力大学电气与电子工程学院, 2011.
Jiang Da-peng. Modeling and simulation of controlled reactor used for extra-high voltage grid[D]. Beijing: School of Electrical and Electronic Engineering, North China Electric Power University, 2011.
71 张宇, 陈乔夫, 李江红, 等.一种用于电气化铁道无功补偿的可控电抗器[J]. 电工技术学报, 2011, 26(8): 166-171.
Zhang Yu, Chen Qiao-fu, Li Jiang-hong, et al.A controllable reactor for reactive power compensation of electrified railways[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 166-171.
72 张琳. 大规模风电外送系统中分级式可控高抗控制策略研究[D].北京: 华北电力大学电气工程学院,2012.
Zhang Lin. Study on control strategy with stepped controllable shunt reactor in large-scale wind power systems[D]. Beijing: School of Electric Power Engineering, North China Electric Power University, 2012.
73 张宇.新型变压器式可控电抗器技术研究[D].武汉: 华中科技大学电气与电子工程学院, 2009.
Zhang Yu. Researeh on a novel transformer-type controllable reactor[D]. Wuhan: School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 2009.
74 黄利军.新型调电路式可控电抗器的研究[D]. 长沙:湖南大学电气与信息工程学院, 2007.
Huang Li-jun. Research of a novel adjusted-circuit controllable reactor[D]. Changsha: School of Electrical and Information Engineering, Hunan University, 2007.
75 陈志伟.基于纳米材料磁状态可调整的多功能电力变压器研究[D].沈阳: 沈阳工业大学电气工程学院,2017.
Chen Zhi-wei. Study on multi-function transformer with adjustable magnetic state based on nano-materials[D]. Shenyang: School of Electrical Engineering, Shenyang University of Technology, 2017.
76 吴红雨. 具有可控电抗器功能的变压器磁集成技术研究[D]. 沈阳: 沈阳工业大学电气工程学院, 2016.
Wu Hong-yu. Research on integrated magnetics of transformer with the function of controlled reactor[D]. Shenyang: School of Electrical Engineering, Shenyang University of Technology, 2016.
77 宋文娟. 高温超导复合导体及超导线圈的交流损耗研究[D]. 北京: 北京交通大学电气工程学院, 2019.
Song Wen-jun. AC loss investigation of high temperature superconducting assembled conductor and superconducting coil[D]. Beijing: School of Electrical Engineering, Beijing Jiaotong University, 2019.
78 Wang P, Zou J L, Ma X K. Stability analysis of magnetically controlledreactor for reactive power compensation based on small-signal model[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8585-8594.
79 刘海鹏, 尹忠东, 李和明, 等. 提高他励式磁控电抗器响应速度的方法[J]. 电力自动化设备, 2014, 34(5): 116-120.
Liu Hai-peng, Yin Zhong-dong, Li He-ming, et al. Improvement of SMCR response[J]. Electric Power Automation Equipment, 2014, 34(5): 116-120.
80 夏长亮, 王东, 程明, 等. 高效能电机系统可靠运行与智能控制基础研究进展[J]. 中国基础科学, 2017(1): 16-23.
Xia Chang-liang, Wang Dong, Cheng Ming, et al.Advancements of basic researches on high-efficiency motor system's reliability and intelligence control[J]. China Basic Science, 2017(1): 16-23.
81 马伟明, 王东, 程思为, 等.高性能电机系统的共性基础科学问题与技术发展前沿[J]. 中国电机工程学报, 2016, 36(8): 2025-2035.
Ma Wei-ming, Wang Dong, Cheng Si-wei, et al. Common basic scientific problems and development of leading-edge technology of high performance motor system[J]. Proceedings of the CSEE, 2016, 36(8): 2025-2035.
82 赵坷.电力节能降耗技术措施分析[J]. 中国新通信, 2018, 20(3): 220.
Zhao Ke. Analysis of technical measures for energy saving and consumption reduction of electric power[J]. China New Telecommunications, 2018, 20(3): 220.
83 何正友, 李波, 廖凯, 等. 新形态城市电网保护与控制关键技术[J]. 中国电机工程学报, 2020, 40(19): 6193-6207.
He Zheng-you, Li Bo, Liao Kai, et al. Key technologies for protection and control of novel urban power grids[J]. Proceedings of the CSEE, 2020, 40(19): 6193-6207.
84 吕超, 刘爽, 王世明. 智能电网管理服务系统集成框架[J]. 吉林大学学报: 工学版, 2012, 42(): 246-250.
Lv Chao, Liu Shuang, Wang Shi-ming. Integration framework of smart grid management service system[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(Sup.1): 246-250.
85 栾文鹏, 刘永磊, 王鹏, 等. 基于可信平台模块的能源互联网新型统一安全架构[J]. 吉林大学学报: 工学版, 2017, 47(6): 1933-1938.
Luan Wen-peng, Liu Yong-lei, Wang Peng, et al. Novel universal security mechanism for energy internet[J], Journal of Jilin University (Engineering and Technology Edition), 2017, 47(6): 1933-1938.
86 盛苹. 两相磁性材料的磁特性模拟及其在电气设备中的应用研究[D]. 沈阳: 沈阳工业大学电气工程学院, 2016.
Sheng Ping.Two phase simulation of the magnetic properties of magnetic material and its application in electrical equipment research[D].Shenyang: School of Electrical Engineering, Shenyang University of Technology, 2016.
[1] Guo WANG,Wen-kai GUO,Chang-chun WANG. Overview and prospect of distribution network topology identification [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 312-327.
[2] CHEN Song-li, TIAN De, SUN Yun-feng, XIN Hai-sheng, HAN Qiao-li. Matching for wind-solar hybrid power system for off-net household [J]. , 2012, 42(04): 882-886.
[3] ZHANG Yu, ZHU Qi-dan| DAI Tian-hong, MU Li-xin. Intelligent control for marine power system [J]. 吉林大学学报(工学版), 2011, 41(01): 221-0225.
[4] SUN Yong, LI Zhi-Min, YU Ji-Lai. Design of reducedorder power system stabilizer based on minimum entropy H&infin|theory [J]. 吉林大学学报(工学版), 2010, 40(02): 523-0528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[9] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[10] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .