Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (2): 555-561.doi: 10.13229/j.cnki.jdxbgxb20211312

Previous Articles     Next Articles

Intelligent recognition model of image features based on multi⁃source big data analysis

Min FAN1(),Shi-jun SONG2()   

  1. 1.School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 610031,China
  • Received:2021-12-01 Online:2023-02-01 Published:2023-02-28
  • Contact: Shi-jun SONG E-mail:fanmin2312@yeah.net;swjtulab@163.com

Abstract:

Due to the influence of image noise, the accuracy of image feature recognition is reduced. Therefore, an intelligent image feature recognition model based on multi-source big data analysis is proposed. According to the improved adaptive two-dimensional median filtering method, all pixels in the small window are checked and the noise is filtered. If the pixels that are not polluted by noise are detected, they are directly output. On the basis of single scale fuzzy mathematics, the three Gaussian model is used to iteratively process the uniform image brightness value, The gray value of the neighborhood center point is decomposed into the real part and the imaginary part, the local binary feature and the Brushlet feature are extracted, the gray value of the adjacent two pixels is subtracted, and the image features are intelligently recognized according to the heuristic factor and the maximum gray gradient. The simulation results show that the proposed model can adjust the resolution evenly when the image is unclear, and ensure the integrity of information, accurate and effective recognition results, and strong anti noise ability.

Key words: median filtering, three Gaussian model, surround function, local binary mode characteristics, brushlet domain complex feature, set domain adaptive fast algorithm

CLC Number: 

  • TP391

Fig.1

Original multi-source image"

Fig.2

Comparison of preprocessing and extraction results"

Table 1

Comparison of information enhancement effects of three algorithms"

算法精度对比度信息熵所用时间/s
k-means88.2528.456.749.05
模糊数学78.9428.547.6612.34
本文94.5237.469.907.12
1 李明超, 刘承照, 张野, 等. 耦合颜色和纹理特征的矿物图像数据深度学习模型与智能识别方法[J]. 大地构造与成矿学, 2020, 44(2): 203-211.
Li Ming-chao, Liu Cheng-zhao, Zhang Ye, et al. A deep learning and intelligent recognition method of image data for rock mineral and its implementation[J]. Geotectonica et Metallogenia, 2020, 44(2): 203-211.
2 韦超现. 基于视觉传达的多帧图像特征目标跟踪仿真[J]. 计算机仿真, 2021, 38(1): 404-407, 420.
Wei Chao-xian. Multi-frame image feature tracking simulation based on visual communication[J]. Computer Simulation, 2021, 38(1): 404-407, 420.
3 陈汶滨, 曾渌麟. 基于谱域特征提取与线性回归分类的智能人脸识别算法[J]. 计算机应用研究, 2019, 36(10): 3116-3120.
Chen Wen-bin, Zeng Lu-lin. Intelligent face recognition algorithm based on spectral feature extraction and linear regression classification[J]. Application Research of Computers, 2019, 36(10): 3116-3120.
4 范宇宾, 郭唯娜, 柯长青. 纹理特征辅助的SAR影像冰川识别[J]. 冰川冻土, 2019, 41(6): 1326-1334.
Fan Yu-bin, Guo Wei-na, Ke Chang-qing.Texture-assisted glacier recognition based on SAR image[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1326-1334.
5 Zhang Y, Li M, Han S, et al. Intelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms[J]. Sensors, 2019, 19(18): 3914.
6 丁慧洁. 基于非下采样剪切波特征提取的SAR图像目标识别方法[J]. 探测与控制学报, 2020, 42(1): 75-80.
Ding Hui-jie. SAR target recognition based on non-subsampled shearlet transform(NSST) feature extraction[J]. Journal of Detection & Control, 2020, 42(1): 75-80.
7 Sun H, Zhu F, Hao Y, et al. Unified optimization for multiple active object recognition tasks with feature decision tree[J]. Journal of Intelligent & Robotic Systems, 2021, 103(2): 1-15.
8 钱银中, 沈一帆. 姿态特征与深度特征在图像动作识别中的混合应用[J]. 自动化学报, 2019, 45(3): 626-636.
Qian Yin-zhong, Shen Yi-fan.Hybrid of pose feature and depth feature for action recognition in static image[J].Acta Automatica Sinica, 2019, 45(3): 626-636.
9 Wu C, Jiang P, Ding C, et al. Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network[J]. Computers in Industry, 2019, 108: 53-61.
10 董志鹏, 王密, 李德仁, 等. 遥感影像目标的尺度特征卷积神经网络识别法[J].测绘学报, 2019, 48(10): 1285-1295.
Dong Zhi-peng, Wang Mi, Li De-ren,et al. Object detection in remote sensing imagery based on convolutional neural networks with suitable scale features[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48 (10): 1285-1295.
11 Wu X, Sun C, Zou T, et al. SVM-based image partitioning for vision recognition of AGV guide paths under complex illumination conditions[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61(2): 101856
12 郜峰利, 陶敏, 李雪妍, 等. 基于深度学习的CT影像脑卒中精准分割[J]. 吉林大学学报:工学版, 2020, 50(2): 678-684.
Gao Feng-li, Tao Min, Li Xue-yan, et al. Accurate segmentation of stroke in CT image based on deep learning[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 678-684.
13 Hassan M, Ali S, Alquhayz H, et al. Developing intelligent medical image modality classification system using deep transfer learning and LDA[J]. Scientific Reports, 2020, 10(1): 012868.
14 Hassaballah M, Alshazly H A, Ali A A. Ear recognition using local binary patterns: a comparative experimental study[J]. Expert Systems with Applications, 2019, 118: 182-200.
15 王柯俨, 胡妍, 王怀, 等. 结合天空分割和超像素级暗通道的图像去雾算法[J]. 吉林大学学报:工学版, 2019, 49(4): 1377-1384.
Wang Ke-yan, Hu Yan, Wang Huai, et al. Image dehazing algorithm by sky segmentation and superpixel-level dark channel[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4):1377-1384.
16 Wang Z, Liu X, He Z, et al. Intelligent detection of flip chip with the scanning acoustic microscopy and the general regression neural network[J]. Microelectronic Engineering, 2019, 217(9): 111127.
17 闫建阳, 陈小虎, 陈俊康. 基于铁谱图像异类特征融合的磨损类型识别方法[J]. 润滑与密封, 2020, 45(3): 113-120.
Yan Jian-yang, Chen Xiao-hu, Chen Jun-kang. Wear type recognition method based on heterogeneous feature fusion of iron spectrum images[J]. Lubrication Engineering, 2020, 45(3): 113-120.
18 李军军, 曹建农, 程贝贝, 等. 联合像素与多尺度对象的高分辨率遥感影像谱聚类分割[J]. 吉林大学学报:工学版, 2019, 49(6): 2098-2108.
Li Jun-jun, Cao Jian-nong, Cheng Bei-bei, et al. High spatial resolution remote sensing imagery segmentation based on combination of pixels and multi-scale objects using spectral clustering[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 2098-2108.
19 Al-Shemarry M S, Li Y, Abdulla S. An efficient texture descriptor for the detection of license plates from vehicle images in difficult conditions[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(2): 553-564.
20 Liu X, Jing W, Zhou M, et al. Multi-scale feature fusion for coal-rock recognition based on completed local binary pattern and convolution neural network[J]. Entropy, 2019, 21(6): 21060622.
[1] Tohtonur,Hai⁃long ZHANG,Jie WANG,Na WANG,Xin⁃chen YE,Wan⁃qiong WANG. High speed median filtering algorithm based on graphics processing unit [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 979-985.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .