Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (7): 1943-1950.doi: 10.13229/j.cnki.jdxbgxb.20211021

Previous Articles    

Effect of high temperature immersion on properties of T800 carbon fiber/epoxy resin composites

Liang XU(),Yu-bo BIAN,Song ZHOU(),Jing-hou XIAO   

  1. College of Mechatronics Engineering,Shenyang Aerospace University,Shenyang 110136,China
  • Received:2021-10-07 Online:2023-07-01 Published:2023-07-20
  • Contact: Song ZHOU E-mail:sysyxu@163.com;zhousong23@163.com

Abstract:

The hygroscopic properties and properties of T800 carbon fiber/epoxy matrix composites were analyzed under water immersion conditions at different temperatures. The mass variation, moisture absorption rate variation, IR spectrum, surface morphology before and after water immersion, glass transition temperature, compressive strength and interlayer shear strength were analyzed. The results show that the temperature is higher, the rate of moisture absorption is faster, and the degree of Tg(glass transition temperature) reduction is larger. Cracks occur on the specimen surface and the interface between the fiber and the resin matrix is damaged. After water immersion, the inter-laminar shear strength and compressive strength of the sample are significantly reduced.

Key words: T800 carbon fiber-epoxy composite, immersion environment, moisture absorption rate, mechanical property

CLC Number: 

  • TB332

Fig.1

Variation curve of mass"

Fig.2

SEM images under different soaking solutions"

Fig.3

Infrared spectra before and after aging"

Fig.4

DMA curves in different environments"

Fig.5

State of specimen before and after interlayershear test"

Table 1

Influence of different solution immersion on interlayer shear property of T800 carbon fiber composites"

剪切性能未水浸

70 ℃

蒸馏水

90 ℃

蒸馏水

70 ℃

3.5%NaCl溶液

90 ℃

3.5%NaCl溶液

最大破坏载荷/N48564453442244104322
剪切强度/MPa84.49071.48670.93870.60669.187

Table 2

Load and model of interlayer shear failure of T800 carbon fiber composite material immersed in different temperature solutions"

试验编号破坏载荷/N破坏模式
未水浸70 ℃蒸馏水90 ℃蒸馏水70 ℃ 3.5%NaCl溶液90 ℃ 3.5%NaCl溶液
149324398451143534426层间剪切
247664456436545874210层间剪切
347114587438144314298层间剪切
448834501436643274356层间剪切
549884323448743524320层间剪切

Fig.6

Interlayer shear strength test error distribution"

Fig.7

State of specimen before and after compressiontest"

Table 3

Influence of different solution immersion on the compression property of T800 carbon fiber composite"

性能未水浸

70 ℃

蒸馏水

90 ℃

蒸馏水

70 ℃

3.5%NaCl溶液

90 ℃

3.5%NaCl溶液

最大破坏载荷/N33 01232 05932 25431 77832 475
压缩强度 /MPa602.12578.49579.62575.37580.42

Table 4

Compression failure load and mode of T800 carbon fiber composite material immersed in different temperature solutions"

试验编号破坏载荷/N破坏模式
未水浸70 ℃蒸馏水90 ℃蒸馏水70 ℃ 3.5%NaCl溶液90 ℃ 3.5%NaCl溶液
133 54032 68631 65131 60432 620BGM
233 41331 49532 37431 22831 836BGM
332 99432 21132 44032 33333 067BGM
432 88431 82731 98732 00132 396BGM
532 22932 07632 81931 72532 452BGM

Fig. 8

Compression strength test error distribution"

1 吕小军,张琦,马兆庆,等.湿热老化对碳纤维/环氧树脂基复合材料力学性能影响研究[J]. 材料工程, 2005(11): 50-53.
Xiao-jun Lü, Zhang Qi, Ma Zhao-qing, et al. Effect of hygrothermal aging on mechanical properties of carbon fiber/epoxy resin matrix composites[J]. Materials Engineering, 2005(11): 50-53.
2 Venkatesha B K, Saravanan R, Babu K A. Effect of moisture absorption on woven bamboo/glass fiber reinforced epoxy hybrid composites[J]. Materials Today: Proceedings, 2021(45): 216-221.
3 王国建,孙耀宁,姜宏,等. 湿热-高温循环老化对环氧乙烯基酯树脂/玻璃纤维复合材料性能影响[J]. 工程塑料应用, 2020, 48(9): 121-126.
Wang Guo-jian, Sun Yao-ning, Jiang Hong, et al. Influences of cyclic hygrothermal-thermal aging on properties of epoxy vinylester resin/glass fiber composites[J]. Engineering Plastics Application, 2020, 48(9): 121-126.
4 Li H L, Zhang K F, Fan X T, et al. Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites[J]. Composites Part B, 2019, 173: No. 106910.
5 余海燕,吴航宇,石慧茹. 湿热环境中碳纤维复合材料层合板的强度退化及老化寿命预测[J]. 机械工程材料, 2021, 45(4): 40-45.
Yu Hai-yan, Wu Hang-yu, Shi Hui-ru. Strength degradation and aging life prediction of carbon fiber composite laminates in hot and humid environment[J]. Materials for Mechanical Engineering, 2021, 45(4): 40-45.
6 王汝敏. 聚合物基复合材料及工艺[M]. 北京: 科学技术出版社, 2004.
7 John F M, Sandra R. Water absorption dimensional change and radial pressure in resin matrix dental restorative materials [J]. Biomaterials, 2004, 25: 4001-4007.
8 包建文,陈祥宝. 5284/T300复合材料湿热性能研究[J]. 宇航材料工艺, 2000(4): 39-42.
Bao Jian-wen, Chen Xiang-bao. Study on the moisture and thermal properties of 5284/T300 composites[J]. Aerosp Mater Technol, 2000(4): 39-42.
9 栗晓飞,张琦,谢国君,等. 影响碳纤维增强树脂基复合材料腐蚀重要环境因素的研究[J]. 装备环境工程, 2005, 2(6): 34-40.
Li Xiao-fei, Zhang Qi, Xie Guo-jun, et al. Study on important environmental factors affecting corrosion of carbon fiber reinforced resin matrix composites[J]. Equipment Environmental Engineering, 2005, 2(6): 34-40.
10 Wolff E G. Polymer Matrix Composites: Moisture Effects and Dimensional Stability, International Encyclopedia of Composites[M]. New York: VCH Publishers, 1991.
11 Xu Z R, Ashbee K. Photo-elastic study of the durability of interfacial bonding of carbon fiber epoxy resin composites[J]. Journal of Materials Science, 1994, 29(2): 394-403.
12 Xu L, He Y, Ma S H, et al. Effects of hygrothermaland thermal-oxidative ageing on the open-hole properties of T800/high-temperature epoxy resin composites with different hole shapes[J]. High Perform Polym, 2019, 32(5): 494-505.
13 周松,贾耀雄,许良,等. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 46(10): 138-143.
Zhou Song, Jia Yao-xiong, Xu Liang, et al. Effect of hygrothermal environmenton mechanical properties of T800 carbon fiber/epoxy resin composites[J]. Journal of Materials Engineering, 2021, 46(10): 138-143.
14 李玉玲,万里强,黄发荣,等. 碳纤维/聚三唑树脂复合材料的湿热老化行为[J]. 玻璃钢/复合材料, 2014(11): 36-41.
Li Yu-ling, Wan Li-qiang, Huang Fa-rong, et al. Wet-heat aging behavior of carbon fiber/polytriazole resin composites[J]. Fiber-glass reinforced Plastics/composites, 2014(11):36-41.
15 Ma S H, He Y, Hui L, et al. Effects of hygrothermal and thermal aging on the low-velocity impact properties of carbon fiber composites[J]. Adv Compos Mater, 2019, 29(9): 1-18.
16 王莉莉,杨小平,于运花,等. 湿热环境对抽油杆CF/VE拉挤复合材料的影响[J]. 复合材料学报, 2004, 21(3): 131-136.
Wang Li-li, Yang Xiao-ping, Yu Yun-hua, et al. Effect of hot and humid environment on sucker rod CF/VE pultrusion composites[J]. Acta Materiae Compositae Sinica, 2004, 21(3): 131-136.
17 高建业,洪彬,高振东,等. 碳纤维增强用环氧树脂的湿热老化规律研究[J]. 热固性树脂, 2018, 33(5): 56-59.
Gao Jian-ye, Hong Bin, Gao Zhen-dong, et al. Study on damp heat aging law of epoxy resin for carbon fiber reinforcement[J]. Thermosetting Resin, 2018, 33(5): 56-59.
18 高坤,史汉桥,孙宝岗,等. 湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2016(6): 1147-1152.
Gao Kun, Shi Han-qiao, Sun Bao-gang, et al. Effect of hygrothermal aging on properties of glass fiber/epoxy resin composites[J]. Acta Composite Materials, 2016(6): 1147-1152.
19 马少华,王勇刚,回丽,等. 湿热环境下复合材料孔板压缩性能的研究[J]. 宇航材料工艺, 2015, 45(6): 66-70.
Ma Shao-hua, Wang Yong-gang, Hui Li, et al. Study on compression properties of composite orifice plates under hot and humid environment[J]. Aerospace Materials Technology, 2015, 45(6): 66-70.
20 余治国,杨胜春,宋笔锋. T700和T300碳纤维增强环氧树脂基复合材料耐湿热老化性能的对比[J]. 机械工程材料, 2009(6): 48-51.
Yu Zhi-guo, Yang Sheng-chun, Song Bi-feng. Comparison of hygrothermal aging resistance of T700 and T300 carbon fiber reinforced epoxy resin matrix composites[J]. Mechanical Engineering Materials, 2009(6): 48-51.
[1] Wen-cui XIU,Hua WU,Ying HAN,Yun-xu LIU. Effect of isothermal heat treatment temperature on microstructure and mechanical properties of super bainite [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 520-525.
[2] ZHUNG Wei-min, ZHAO Wen-zeng, XIE Dong-xuan, LI Bing. Joint performance analysis on connection of ultrahigh-strength steel and aluminum alloy with hot riveting [J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[3] LIU Xiao-bo, ZHOU De-kun, ZHAO Yu-guang. Microstructure and mechanical property of Mg2Si/Al composites fabricated by semi-solid extrusion under different isothermal heat treatments [J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[4] LI Chun-ling, FAN Ding, WANG Bin, YU Shu-rong. 5A06 aluminum alloy and galvanized steel butt welding-brazing by laser with preset filler powder [J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[5] LI Xin,WANG Gang,LU Guan-han,GU Zheng-wei,XU Hong. Weldability of 22MnB5 after hot stamping by TIG welding processes [J]. 吉林大学学报(工学版), 2014, 44(3): 708-711.
[6] BAI Zhi-fan, LI Gui-zhong, WANG Chao, WANG Liang, ZHANG Zhi-min. Microstructure and mechanical property of the welded joints for high-speed train bogie [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 207-211.
[7] SUN Ji-yu, WANG Yue-ming, PAN Chun-xiang, CONG Xian-ling. Static and dynamic nano-mechanical properties of the keratinous of cattle horns [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 475-478.
[8] GU Zheng-wei, YU Si-bin, HAN Li-jun, MENG Jia, XU Hong. Laser lap-welding performance of ultra-high strength steel and micro-alloy steel [J]. 吉林大学学报(工学版), 2012, 42(02): 349-353.
[9] BAI Zhi-fan, LI Gui-zhong, WANG Chao. Microstructure and mechanical property of the welded joints of S355J2W+N steel [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 202-204.
[10] JIANG Ri-hua, BAI Shuang, DAI Yue, ZHAO Mei-sheng. Biomechanical characteristics of keloids [J]. 吉林大学学报(工学版), 2011, 41(6): 1675-1677.
[11] YU Hai-ye, QIAO Jian-lei, XIAO Ying-kui, WANG Shu-jie, ZHANG Yan-pin. Physical properties of potato tuber cultured by aeroponics [J]. 吉林大学学报(工学版), 2011, 41(01): 282-0287.
[12] JIA Chao, JI Sheng-Zhen, ZHANG Feng. Timedependent reliability of concrete pier of Tsingtao bay bridge [J]. 吉林大学学报(工学版), 2010, 40(06): 1543-1549.
[13] JING Jian-Sheng, HOU Xiao-Meng-| ZHENG Wen-Zhong. Mechanical properties of prestressing steel wire and nonprestressed steel bar after elevated temperature experience [J]. 吉林大学学报(工学版), 2010, 40(02): 441-0446.
[14] DUAN Zhen-zhen1,SUN Da-qian1,ZHU Song2,YIN Shi-qiang1,QIU Xiao-ming1 . Effects of technology parameters on microstructure and mechanical properties at the interface between porcelain and titanium [J]. 吉林大学学报(工学版), 2009, 39(01): 66-71.
[15] ZHANG Xiao-ming, WANG Hong-yan, LI Jun-feng . Preparation of bone repair material of modified-MWNTs/nano-HA/PLA
[J]. 吉林大学学报(工学版), 2008, 38(04): 844-847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!