Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2573-2580.doi: 10.13229/j.cnki.jdxbgxb.20221082

Previous Articles     Next Articles

Seismic performance simulation of high⁃rise concrete core tube based on static nappe analysis algorithm

Ming LEI(),Si-yang YIN,De-ling WANG,Ji-cheng ZHANG(),Shi-wei LU   

  1. School of Urban Construction,Yangtze University,Jingzhou 434023,China
  • Received:2022-08-26 Online:2023-09-01 Published:2023-10-09
  • Contact: Ji-cheng ZHANG E-mail:88456455@qq.com;100995@yangtzeu.edu.cn

Abstract:

In order to reduce the damage of concrete core tube of high-rise buildings caused by vibration, the seismic performance simulation method of concrete core tube of high-rise buildings based on static pushover analysis algorithm was studied. A high-rise building concrete core tube with buckling constraint bracing was selected as the research object, and the seismic performance of high-rise building concrete core tube based on static nappe analysis algorithm was simulated with software PKPM. The test results show that the distribution of the lateral force of the static nappe has great influence on the calculation results of the apex displacement angle and the base shear force of the concrete core tube in high-rise buildings. In the X-direction, the base shear curve of concrete core tube supported by buckling constraint increases exponentially. The stiffness of concrete core tube decreases and the proportion of column shear increases under strong vibration. When ductility coefficient is constant, the ratio of energy spectrum of high-rise concrete core tube is positively correlated with stiffness reduction coefficient. The damage of concrete core tube in high-rise building caused by longer strong earthquake duration increases with the increase of strong earthquake duration. With the increasing of the characteristic stiffness value, the proportion of the energy consumption of shear wall in the total hysteretic energy consumption ratio decreases, while the proportion of the energy consumption of frame beam and column increases and the distribution pattern is roughly linear.

Key words: static nappe analysis, high-rise buildings, concrete core tube, seismic performance simulation, vertex displacement angle, base shear

CLC Number: 

  • TU971

Fig.1

Overall structure of high-rise building"

Table 1

Sectional dimensions of components"

构件尺寸/mm
外框柱2000×2000~1000×1000,含钢率为7.5%
钢梁H1000×500×30×40~H1000×200×25×58
核心筒外墙1500~500
内墙500~300
连梁1000

环带

桁架

弦杆H1000×500×50×50
腹杆1000×500×50×50
楼面梁H500×500×15×30
楼板筒外150,筒内160,加强层及相邻层160

Fig.2

High rise building core tube structure model"

Table 2

Peak displacement angle and base shear force of different static nappe lateral force distributions"

参 数侧力分布形式
均布倒三角第一振型三者平均
正常使用时基底剪力/kN1381.61074.61206.81230.5
正常使用时顶点位移角/rad1/15001/13001/12001/1300
暂时使用时基底剪力/kN3118.52623.62461.82734.6
暂时使用时顶点位移角/rad1/5001/4001/3901/430
生命安全时基底剪力/kN6717.85231.84712.55554.9
生命安全时顶点位移角/rad1/1401/1301/1701/150
接近倒塌时基底剪力/kN5474.84953.74331.55326.7
接近倒塌时顶点位移角/rad1/601/781/801/75

Fig.3

Static nappe curve"

Fig.4

Static pushover analysis results of concrete core tube in X direction"

Table 3

Shear force shared by X-direction column and wall"

层数柱剪力/kN墙剪力/kN柱剪力百分比/%
13 246.53041 432.3187.34
43 652.28538 946.5378.51
73 784.69536 118.4259.45
105 192.66030 456.56314.37
135 473.86024 603.49517.93
164 662.32518 521.79019.91
194 834.8159 927.01532.47
222 247.7503 006.39955.86

Fig.5

Ratio of shear force of weak earthquake column to total base shear force of strong earthquake"

Fig.6

Effect of different stiffness reduction factors on energy spectrum ratio"

Fig.7

Relationship between stiffness reduction coefficient and energy spectrum ratio"

Fig.8

Relationship between strong earthquake duration and hysteretic energy consumption ratio"

Fig.9

Relationship between characteristic value of stiffness and hysteretic energy consumption ratio of each member"

Fig.10

Response results of maximum inter story acceleration rate of high-rise buildings"

Fig.11

Structural vertex displacement test results of three methods"

1 郭天祥. 基于大震动力弹塑性分析的某超高层混合结构抗震设计[J]. 建筑结构, 2020, 50(16): 64-70.
Guo Tian-xiang. Seismic design of a super high-rise hybrid structure based on dynamic elastoplastic analysis under rare earthquake[J]. Building Structure, 2020, 50(16): 64-70.
2 李永梅, 王浩, 彭凌云, 等. 填充墙钢筋混凝土框架结构基于位移的改进抗震设计方法[J]. 建筑结构学报, 2019, 40(6): 125-132.
Li Yong-mei, Wang Hao, Peng Ling-yun, et al. Advanced displacement-based seismic design method of reinforced concrete frame structures with infill wall[J]. Journal of Building Structures, 2019, 40(6): 125-132.
3 倪茜, 张斌, 李锦锦. 基于静力弹塑法方法的碳纤维加固框架结构抗震性能分析[J]. 工业建筑, 2020, 50(2): 104-108, 112.
Ni Qian, Zhang Bin, Li Jin-jin.Seismic performance analysis of carbon fiber reinforced frame structures based on static elastic-plastic method[J].Industrial Construction, 2020, 50(2): 104-108, 112.
4 卢啸. 钢筋混凝土框架核心筒结构地震韧性评价[J]. 建筑结构学报, 2021, 42(5): 55-63.
Lu Xiao. Seismic resilience evaluation of reinforced concrete frame core tube structure[J]. Journal of Building Structures, 2021, 42(5): 55-63.
5 寇俊敏, 苍雁飞. 建筑框架-核心筒结构静力弹塑性参数优化[J]. 计算机仿真, 2020, 37(9): 189-193.
Kou Jun-min, Cang Yan-fei. Optimization of static elastoplastic parameters of frame core tube structure[J]. Computer Simulation, 2020, 37(9): 189-193.
6 贺星新, 朱金坤, 刘斌, 等. 吴江某超高层塔楼结构抗震设计与分析[J]. 建筑结构, 2021, 51(): 676-682.
He Xing-xin, Zhu Jin-kun, Liu Bin, et al. Seismic design and analysis of a super tall tower in Wujiang[J]. Building Structure, 2021, 51(Sup.1): 676-682.
7 肖从真, 李建辉, 陆宜倩, 等. C100高强混凝土框架-核心筒高层建筑结构抗震性能研究[J]. 建筑科学, 2021, 37(3): 1-7.
Xiao Cong-zhen, Li Jian-hui, Lu Yi-qian, et al. Research on seismic performance of frame-core tube high-rise building structure with C100 high-strength concrete[J]. Building Science, 2021, 37(3): 1-7.
8 曲扬, 罗永峰, 黄青隆, 等. 格构拱结构动力响应评估的改进模态推覆分析法[J]. 同济大学学报: 自然科学版, 2019, 47(1): 1-8.
Qu Yang, Luo Yong-feng, Huang Qing-long, et al. An improved modal pushover analysis procedure for estimating seismic responses of latticed arch[J]. Journal of Tongji University(Natural Science), 2019, 47(1): 1-8.
9 郝润霞, 王谋庭, 贾硕, 等. 基于拟力法的框架结构静力推覆分析[J]. 西南交通大学学报, 2020, 55(5): 1028-1035.
Hao Run-xia, Wang Mou-ting, Jia Shuo, et al. Static pushover analysis of frame structure based on force analogy method[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1028-1035.
10 陈安英, 朱光超, 完海鹰, 等. 斜交网格钢框架-混凝土核心筒结构施工变形控制数值模拟[J]. 工业建筑, 2021, 51(2): 76-82.
Chen An-ying, Zhu Guang-chao, Wan Hai-ying, et al.Numerical simulation of deformation control for a hybrid structure combined with diagrid structure and concrete core tube[J]. Industrial Construction, 2021, 51(2): 76-82.
11 吴轶, 林柱帆, 杨春, 等. 带高强混凝土钢板剪力墙的超高层框架-核心筒结构抗震性能研究[J]. 建筑结构, 2019, 49(8): 9-15.
Wu Yi, Lin Zhu-fan, Yang Chun, et al. Study on seismic performances of super high-rise frame-corewall structure with high strength concrete composite steel plate shear walls[J]. Building Structure, 2019, 49(8): 9-15.
12 李英民, 姜宝龙, 张梦玲, 等. 重庆高科太阳座大厦模型结构振动台试验研究[J]. 建筑结构学报, 2019, 40(3): 142-151.
Li Ying-min, Jiang Bao-long, Zhang Meng-ling, et al. Shaking table test on model structure of Chongqing Gaoke sun constellation mansion[J]. Journal of Building Structures, 2019, 40(3): 142-151.
13 唐建余, 潘文, 董卫青, 等. 某超高层框架-钢筋混凝土核心筒结构减震案例分析[J]. 工业安全与环保, 2021, 47(7): 55-59.
Tang Jian-yu, Pan Wen, Dong Wei-qing, et al. Case study on seismic response of one super high rise frame reinforced concrete core tube structure[J]. Industrial Safety and Environmental Protection, 2021, 47(7): 55-59.
14 曾繁良, 黄炎生, 周靖. 钢管混凝土柱排架-核心筒结构抗震性能研究[J]. 振动与冲击, 2020, 39(12): 190-197.
Zeng Fan-liang, Huang Yan-sheng, Zhou Jing. A study on the seismic performance of concrete-filled steel tube column-steel shelf-concrete core tube structures[J]. Journal of Vibration and Shock, 2020, 39(12): 190-197.
15 吴轶, 杨春, 王俊然, 等. 新型带耗能支撑-分散核心筒结构的抗震性能研究[J]. 工程抗震与加固改造, 2020, 42(5): 133-140, 147.
Wu Yi, Yang Chun, Wang Jun-ran, et al. Study on seismic performances of a new decentralized core tubes structure with energy dissipating braces[J]. Earthquake Resistant Engineering and Retrofitting, 2020, 42(5):133-140, 147.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .