Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2563-2572.doi: 10.13229/j.cnki.jdxbgxb.20211238

Previous Articles     Next Articles

Fatigue stiffness degradation and life prediction method of in⁃service concrete T⁃beams

Xin-dai ZUO(),Jin-quan ZHANG,Shang-chuan ZHAO   

  1. Bridge Tunnel Research Center,Research Institute of Highway Ministry of Transport,Beijing 100088,China
  • Received:2021-11-18 Online:2023-09-01 Published:2023-10-09

Abstract:

In order to obtain the fatigue stiffness degradation law of in-service concrete T-beams and carry out fatigue life prediction. Based on the theory of damage mechanics, a stepped stiffness model of concrete T-beams including cracking damage was constructed. Through the full-scale model of three 10 m concrete T beams, static and fatigue failure tests were carried out to obtain the evolution law of fatigue residual stiffness with the number of loads. The fatigue damage coefficient and stiffness degradation coefficient were introduced to establish a concrete T beam in service fatigue life prediction model. The analysis results show that with the increase of load, the residual stiffness of the bridge exhibits three-stage decay, in which the initial and later stages of fatigue decay rapidly, but account for a relatively small proportion of the whole life. The result shows that more than 80% of the whole service life is the main stage of bridge service, it is about 82.7% of the initial stiffness at the time of fatigue failure. Finally, according to the working behavior of in-service concrete T-girder bridges, a life prediction method for in-service reinforced concrete girder bridges is proposed, the related research results can provide theoretical support for the study of life prediction of such bridges.

Key words: bridge engineering, in-service concrete T-beam, fatigue life, stepped stiffness model, cumulative damage coefficient

CLC Number: 

  • U448.38

Fig.1

Schematic diagram of cracking and bending crack distribution of concrete T-beam"

Fig.2

Staircase stiffness model of damaged concrete T-beam"

Fig.3

Layout of T beam"

Fig.4

Fabrication of test beam"

Table 1

Mechanical properties of concrete and steel bars for test beam"

材料种类立方体抗压强度/MPa棱柱体抗压强度/MPa屈服强度/MPa弹性模量/104 MPa
C30混凝土36.826.2-3.20
32 mmHRB400--48520.5
28 mmHRB400--46720.5
HPB300--34721.0

Fig.5

Test beam loading"

Table 2

Loading parameters of fatigue test"

试验梁编号Pmin/kNPmax/kN应力幅/kN
TLD-150370320
TLD-250370320

Fig.6

Test data acquisition equipment"

Fig.7

Measuring point layout of test beam"

Fig.8

Load-midspan deflection curve of TLJ beam"

Table 3

Loading parameters of fatigue test"

试验梁编号疲劳寿命/104最大裂缝宽度wmax/mm
TLD-11322.23
TLD-2141.51.75

Fig.9

Failure mode of test beams"

Table 4

Comparison of fundamental frequency of uncracked test beams"

试验梁编号基频f/Hz误差/%
试验值理论计算值
TLJ15.0115.231.44
TLD-115.1315.230.66
TLD-214.9615.232.43

Table 5

Calculated values of fundamental frequency and residual stiffness of test beams under different loading times"

荷载循环次数n/104TLD-1TLD-2
x1/mx2/m基频f/Hz剩余刚度比ηn剩余刚度Bn/(MN·m2x1/mx2/m基频f/Hz剩余刚度比ηn剩余刚度Bn/(MN·m2
0.00.00.015.131.000765.7120.00.014.961.000738.627
10.04.14.114.940.907694.8034.14.214.940.900664.674
20.03.93.914.850.895685.1694.04.014.880.894660.385
30.03.73.614.740.885677.7814.03.914.860.892659.215
40.03.73.514.710.881674.7873.53.714.750.892659.165
50.03.53.414.660.881674.7273.43.414.680.890657.288
60.03.43.214.610.880674.2003.23.214.620.889656.816
70.03.33.114.570.878672.6513.13.014.580.889656.865
80.03.33.114.560.876671.0212.93.014.540.887654.868
90.03.13.014.520.877671.8952.92.814.510.886654.229
100.02.82.614.400.873668.5182.82.814.480.883651.935
110.02.82.614.390.871667.2202.82.614.440.880649.888
120.02.82.614.370.868664.6272.82.614.410.875646.124
130.01.81.514.110.860658.8612.32.214.160.853629.929
132.01.61.513.900.835639.407
140.02.11.813.980.836617.775
141.52.11.813.850.819604.714

Fig.10

Curve of residual stiffness of test beam changing with number of load actions"

Table 6

Fatigue test results of test beams"

试验梁编号初始刚度B0/(MN·m2破坏刚度BNf/(MN·m2刚度比BNf/B0刚度退化率k/(10-4 MN·m2疲劳寿命Nf/104
TLD-1765.712639.4070.8350.271132.0
TLD-2738.672604.7140.8190.241141.5

Fig.11

Test beam fatigue cumulative damage coefficient - cycle life ratio curve"

Table 7

Relative error of fatigue life prediction"

试验梁编号疲劳寿命/104预测寿命/104相对误差%
TLD-1132.0141.37.0
TLD-2141.5153.38.3
1 交通运输部. 2019年年交通运输行业发展统计公报[R]. 北京:交通运输部, 2020.
2 宋秀华, 肖新辉, 鲁乃唯. 基于疲劳损伤的中小跨径桥梁限载取值研究[J]. 交通科学与工程, 2019, 35(2): 58-63.
Song Xiu-hua, Xiao Xin-hui, Lu Nai-wei. Study on vehicle load limit of medium and small span bridges based on fatigue damage[J]. Journal of Transport Science and Engineering, 2019,35(2): 58-63.
3 卫军, 杜永潇, 梁曼舒. 梁结构疲劳刚度退化对模态频率的影响[J] .浙江大学学报:工学版, 2019, 53(5): 899-909.
Wei Jun, Du Yong-xiao, Liang Man-shu. Influence of fatigue stiffness degradation for beam structure on modal frequency[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(5): 899-909.
4 刘芳平, 易文韬. 钢筋混凝土梁基于疲劳刚度退化的承载力退化模型研究[J]. 建筑结构, 2020, 50(22): 99-104, 66.
Liu Fang-ping, Yi Wen-tao. Research on bearing capacity degr8dation model of reinforced concrete beams based on fatigue stiffness degradation[J]. Building Structure, 2020,50(22): 99-104, 66.
5 汪炳, 黄侨, 刘小玲. 组合梁疲劳后的刚度退化规律及计算模型[J]. 振动与冲击, 2021, 40(6): 265-271.
Wang Bing, Huang Qiao, Liu Xiao-ling. Stiffness degradation and its calculation model for composite beams after fatigue[J]. Journal of Vibration and Shock, 2021, 40(6): 265-271.
6 周虎, 肖勇刚, 谭斌. 基于断裂力学的混凝土桥梁疲劳损伤及寿命评估分析[J]. 湖南城市学院学报: 自然科学版, 2018, 27(4): 6-10.
Zhou Hu, Xiao Yong-gang, Tan Bin. Fatigue damage and life evaluation of concrete bridges based on fracture mechanics[J]. Journal of Hunan City University (Natural Science), 2018, 27(4): 6-10.
7 陈万. 重载交通作用下桥梁结构的疲劳损伤数值分析[D].邯郸: 河北工业大学土木工程学院, 2015.
Chen Wan. Numerical analysis on fatigue damage of bridge caused by heavy load traffic[D]. Handan: School of Civil Engineering, Hebei University of Technology, 2015.
8 赵少杰, 任伟新. 超限超载交通对桥梁疲劳损伤及可靠度的影响[J]. 中南大学学报: 自然科学版, 2017, 48(11): 3044-3050.
Zhao Shao-jie, Ren Wei-xin. Effect of overrun and overloaded vehicles on fatigue damage and reliability of highway bridges[J]. Journal of Central South University (Science and Technology), 2017, 48(11): 3044-3050.
9 Natário F, Fernández R M, Muttoni A. Experimental investigation on fatigue of concrete cantilever bridge deck slabs subjected to concentrated loads[J]. Engineering Structures, 2015, 89: 191-203.
10 Liu Fang-ping, Zhou Jian-ting, Yan Lei. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue[J]. PLoS ONE, 2018, 13(3): No.e0192797.
11 朱红兵. 公路钢筋混凝土简支梁桥疲劳试验与剩余寿命预测方法研究[D]. 长沙: 中南大学土木工程学院, 2011.
Zhu Hong-Bing. Method and experiment research on highway reinforced concrete simply-supported girder bridge's fatigue residual service life forecast[D]. Changsha: School of Civil Engineering, Central South University, 2011.
12 刘芳平, 周建庭. 基于疲劳应变演化的混凝土弯曲强度退化分析[J]. 中国公路学报, 2017, 30(4): 97-105.
Liu Fang-ping, Zhou Jian-ting. Concrete bending strength degradation analysis based on fatigues strain evolution[J]. China Journal of Highway and Transport, 2017, 30(4): 97-105.
13 Cheng L J. Flexural fatigue analysis of a CFRP form reinforced concrete bridge deck[J]. Composite Structures, 2011, 93(11):2895-2902.
14 Neild S A, Williams M S, Mcfadden P D. Nonlinear vibration characteristics of damaged concrete beams[J]. Journal of Structural Engineering ASCE, 2003, 129(2): 260-268.
15 曹晖, 郑星, 华建民, 等. 基于非线性振动特性的预应力混凝土 梁损伤识别[J]. 工程力学, 2014, 31(2): 190-194.
Cao Hui, Zheng Xing, Hua Jian-min, et al. Damage detection of prestressed concrete beams based on non-linger dynamic characteristics[J]. Engineering Mechanics, 2014, 31(2): 190-194.
16 卫军, 杜永潇. 基于固有频率的梁结构疲劳损伤演化规律[J]. 中南大学学报: 自然科学版, 2019, 50(8): 1866-1875.
Wei Jun, Du Yong-xiao. Fatigue damage evolution of Timoshenko beams based on natural frequency[J]. Journal of Central South University (Science and Technology), 2019, 50(8): 1866-1875.
17 朱红兵, 赵耀, 李秀, 等. 疲劳荷载作用下钢筋混凝土梁的刚度退化规律及计算公式[J].土木建筑与环境工程, 2014, 36(2): 1-13.
Zhu Hong-bing, Zhao Yao, Li Xiu, et al. Reinforced concrete beam's stiffness degeneration regulation and its calculation formula under the action of fatigue load[J]. Journal of Civil, Architectural & Environment Engineering, 2014, 36(2): 1-13.
18 姚恒盈. 装配式预应力混凝土箱梁静动刚度足尺试验全过程分析[D]. 西安:长安大学公路学院, 2020.
Yao Heng-ying. Dynamic and static stiffness analysis of full-scale prefabricated prestressed concrete girder[D]. Xi′an: School of Highway, Chang'an University, 2020.
19 廉伟, 姚卫星.复合材料层压板剩余刚度-剩余强度关联模型[J]. 复合材料学报, 2008, 25(5): 151-156.
Lian Wei, Yao Wei-xing. Residual stiffness-residual strength coupled model of composite laminates[J]. Acta Materiae Composites Sinica, 2008, 25(5): 151-156.
20 Ma Y, Xiang Y, Wang L, et al. Fatigue life prediction for aging RC beams considering corrosive environments[J]. Engineering Structures, 2014(79): 211-221.
[1] Ran AN,You-zhi WANG. Shear properties of shear stud connectors under combined tension and shear loading [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2554-2562.
[2] Feng WANG,Shuang-rui LIU,Jia-ying WANG,Jia-ling SONG,Jun WANG,Jiu-peng ZHANG,Xiao-ming HUANG. Size and shape effects of wind drag coefficients for porous structures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1677-1685.
[3] Jun WANG,Jia-wu LI,Feng WANG,Jiu-peng ZHANG,Xiao-ming HUANG. Wind speed distribution in simplified U⁃shaped valley and its effect on buffeting response of long⁃span suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1658-1668.
[4] Hua WANG,Long-lin WANG,Zi-mo ZHANG,Xin HE. Safety early warning technology of continuous rigid frame bridges based on crack width variation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1650-1657.
[5] Yu FENG,Jian-ming HAO,Feng WANF,Jiu-peng ZHANG,Xiao-ming HUANG. Analysis of transient wind⁃induced response of long⁃span bridge under nonstationary wind field [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1638-1649.
[6] Zheng-wei GU,Pan ZHANG,Dong-ye LYU,Chun-li WU,Zhong YANG,Guo-jin TAN,Xiao-ming HUANG. Earthquake⁃induced residual displacement analysis of simply supported beam bridge based on numerical simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1711-1718.
[7] Chun-li WU,Shi-ming HUANG,Kui LI,Zheng-wei GU,Xiao-ming HUANG,Bing-tao ZHANG,Run-chao YANG. Analysis of pier action effect under flood based on numerical simulation and statistical analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1612-1620.
[8] Guo-jin TAN,Qing-wen KONG,Xin HE,Pan ZHANG,Run-chao YANG,Yang-jun CHAO,Zhong YANG. Bridge scour depth identification based on dynamic characteristics and improved particle swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1592-1600.
[9] Hui JIANG,Xin LI,Xiao-yu BAI. Review on development of bridge seismic structural systems: from ductility to resilience [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1550-1565.
[10] Ye YUAN. Natural frequency analysis of beam bridge structure under temperature and vehicle action [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1702-1710.
[11] Zi-yu LIU,Shi-tong CHEN,Mo-mo ZHI,Xiao-ming HUANG,Zhe-xin CHEN. Ultimate bearing capacity of temporary⁃permanent conversion rushrepair steel pier for emergency use [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1601-1611.
[12] Yue ZHANG,Chuan-sen LIU,Fei SONG. Influence of abutment back wall on continuous girder bridge's seismic fragility [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1372-1380.
[13] Shu-wei LAN,Dong-hua ZHOU,Xu CHEN,Nan-ming MO. Practical calculation method for the critical bearing capacity of double column bridge with high piers [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1105-1111.
[14] Qi-kai SUN,Nan ZHANG,Xiao LIU,Zi-ji ZHOU. Dynamic reduction coefficients of steel⁃concrete composite beam based on Timoshenko beam theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 488-495.
[15] Yong PENG,Xiu-fang ZHANG,Ze-yu GUO,Xue-yuan LU,Yan-wei LI. Influence of aggregate contact characteristics on shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 178-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .