Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (2): 461-468.doi: 10.13229/j.cnki.jdxbgxb.20220312

Previous Articles    

Travel mode choice in small and media sized city based on random parameters Logit model

Yan ZHUANG1(),Chun-jiao DONG1(),Xue-yu MI2,Xiao-yu ZHANG1,Jing WANG1   

  1. 1.Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Beijing Jiaotong University,Beijing 100044,China
    2.Tangshan Key Laboratory of Air-Ground Intelligent Transportation,North China University of Science and Technology,Tangshan 063210,China
  • Received:2022-03-26 Online:2024-02-01 Published:2024-03-29
  • Contact: Chun-jiao DONG E-mail:yanzhuang1010@bjtu.edu.cn;cjdong@bjtu.edu.cn

Abstract:

In order to provide new thoughts and new methods for traffic planning and management of small and medium-sized cities, the travel characteristics of residents in small and medium-sized cities was analyzed. Considering the heterogeneity of residents' travel mode choices, a travel mode choice model of based on random parameters Logit was constructed. Factors of psychological latent variables such as the requirement of comfort were introduced, and the structural equation model was used to calibrate the parameters, which reflects the relationship between latent variables and index variables. The results show that the prediction accuracy of the stochastic parameter logit model calibrated by structural equation is higher than 95%, which indicates that the structural equation model has good parameter calibration effect, and the constructed stochastic parameter logit model has good fitting degree. In the utility function of the model, the coefficient of travel time is a random parameter, which is related to the individual characteristic variables, travel characteristic variables and psychological latent variables of travelers. Among them, the walking time to the bus stop has the greatest impact on the travel utility, and the value of time decreases by 48 yuan for each additional unit. In addition, the marginal utility of different travel modes on driving time is different. The marginal utility of bus turns from increase to decrease after 45 min. Therefore, the random parameters Logit model considering the heterogeneity of individual psychological latent variables can describe the actual travel mode choice behavior of residents in small and medium-sized cities, and has a stronger explanation for the mechanism of travel characteristics.

Key words: urban transportation, travel mode selection, random parameter, small and medium cities, structural equation model, marginal effect

CLC Number: 

  • U491.1

Table 1

Demographic characteristics"

变量符号含义

个人

属性

性别XGen0:女性1:男性
职业XJob1:学生2:工人3:公务员及事业单位4:公司职员5:私营及个体劳动者6:离退休7:无业8:其他
年龄XAge6~18岁(XAge1);19~29岁(XAge2);30~49岁(XAge3);50~59岁(XAge4);60岁以上(XAge5
受教育程度XEdu1:初中及其以下2:高中及中专3:大专及本科4:硕士及以上
月收入XInc<5000元(XInc1);5000~10000元(XInc2);>10000元(XInc3
私家车拥有情况XCar0、1分别表示无车、有车
非机动车拥有情况XNon0、1分别表示无车、有车

出行

属性

每周乘坐公交次数XFreq①<2次②2~5次③6~10次④11~15次⑤>5次
步行时间XTime到公交站台的步行时间(XTime1);在公交站台的等车时间(XTime2);从公交站台到目的地的步行时间(XTime3

心理

潜变量

舒适性XComf我会在意出行方式的环境(光线、气味、噪声等)c1;我会在意出行方式的速度c2;我会在意出行方式的拥挤程度c3;如果某种出行方式不舒适,我会选择更舒适的出行方式,即使要多花钱(超过2元)c4;如果某种出行方式不舒适,我会选择更舒适的出行方式,即使要多时间(超过10 min)c5
可靠性XReli我会在意站台等车时间的长短c6;我会在意公交到站的准时性c7;我会在意公交到达目的地时间估计的准确性c8
便捷性XConv我会在意步行到公交站台的时间c9;我会在意公交换乘次数的多少c10;我会在意公交行驶的线路途经的站点c11

Fig.1

Analyses on travel characteristics of small and medium sized cities"

Table 2

Prediction accuracy of different sample partition ratios and different latent variable calibration methods"

潜变量标定方法

结构

方程

因子

分析法

主成分

分析法

训练集:验证集(60:40)95.2788.4893.45
训练集:验证集(70:30)96.4492.4991.36
训练集:验证集(80:20)95.8691.1992.65

Table 3

Indicator variable expression of psychological latent variable"

潜变量指标变量符号

因素

荷载值

Cronbach's α

适配

系数

Lcomfort

舒适性

c10.630.6160.194
c20.710.219
c30.550.170
c40.660.204
c50.690.213

Lreliability

可靠性

c60.740.6480.372
c70.520.261
c80.730.367

Lconvenience

便捷性

c90.670.5950.294
c100.820.360
c110.790.346
因子分析Cronbach's α系数:0.768;KMO测度值:0.815;Bartlett检验显著性值:0
模型评价参数卡方自由度比(NC):1.987;适配度(GFI)0.906;调整适配度(AGFI):0.927;均方根残差(RMR):0.026

Table 4

Regression coefficients of random parameter Logit model"

参数系数标准差zp95%置信区间

随机参数

(相关个人、出行属性及心理潜变量参数)

βT-0.265***0.0171.470.0000-0.298-0.232
σT0.042***0.0352.570.0004-0.1610.245
TXAge3-0.133***0.104-5.690.0005-0.4510.185
TXEdu-0.147***0.082-5.340.0000-0.5450.251
TXCar-0.138**0.107-1.920.0000-0.220-0.056
TXTime10.224***0.036-7.870.00000.0220.426
TXComf-0.108***0.304-1.360.0000-0.3120.096
固定参数dcar-0.098***0.162-4.120.0000-0.2590.063
dbus-0.143***0.203-5.210.0000-0.3530.067
βC-0.281***0.042-6.780.0102-0.352-0.210
βW-0.137**0.1032.350.0001-0.7330.459
总体参数McFadden's R20.278
AIC2323
BIC2146

Fig.2

Marginal effect analysis of travel time"

1 Hu H, Xu J, Shen Q, et al. Travel mode choices in small cities of China: a case study of Changting[J]. Transportation Research part D: Transport and Environment, 2018, 59: 361-374.
2 覃栩曈. 中小城市出行即服务体系规划设计[D].桂林:桂林电子科技大学建筑与交通工程学院,2021.
Tan Xu-tong. Planning and design of mobility as a service system in small and medium-sized cities[D]. Guilin: School of Architecture and Transportation Engineering, Guilin University of Electronic Technology,2021.
3 阿东. 基于改进型MNL模型的中小城市居民出行交通方式研究[D].长沙:湖南大学土木工程学院,2019.
Dong A.Research on travel modes of residents in smal and medium-sized cities based on improved MNL mode[D].Changsha:College of Civil Engineering, Hunan University,2019.
4 McFadden D, Train K. Mixed MNL models for discrete response[J]. Journal of Applied Econometrics, 2000, 15(5): 447-470.
5 Koppelman F S, Pas E I. Travel-choice behavior: Models of perceptions, feelings, preference, and choice[J]. Transportation Research Record, 1980(765): 1-13.
6 叶玉玲,韩明初,陈俊晶.基于出行链的城际旅客出行方式选择行为[J].同济大学学报:自然科学版,2018,46(9):1234-1240.
Ye Yu-ling, Han Ming-chu, Chen Jun-jing.Intercity passenger travel mode choice behavior based on trip chain[J]. Journal of Tongji University (Natural Science),2018,46(9):1234-1240.
7 程琳,栾鑫,邓卫,等. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报:工学版, 2018, 48(4):1029-1036.
Cheng Lin, Luan Xin, Deng Wei, et al. Mixed Logit model for understanding travel mode choice behavior of megalopolitan residents[J]. Journal of Jilin University (Engineering and Technology Edition) 2018, 48(4):1029-1036.
8 Ding C, Wang D, Liu C, et al. Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance[J]. Transportation Research Part A: Policy and Practice, 2017, 100: 65-80.
9 刘建荣,郝小妮.基于随机系数Logit模型的市内出行方式选择行为研究[J].交通运输系统工程与信息,2019,19(5):108-113.
Liu Jian-rong, Hao Xiao-ni.Travel mode choice in city based on random parameters logit model[J]. Journal of Transportation Systems Engineering and Information Technology, 2019,19(5):108-113.
10 Escobari D. Airport, airline and departure time choice and substitution patterns: an empirical analysis[J]. Transportation Research Part A: Policy and Practice, 2017, 103: 198-210.
11 唐立,邹彤,罗霞,等.基于混合Logit模型的网约车选择行为研究[J].交通运输系统工程与信息,2018,18(1):108-114.
Tang Li, Zou Tong, Luo Xia, et al. Choice behavior of taxi-hailing based on mixed-logit model[J]. Journal of Transportation Systems Engineering and Information Technology, 2018,18(1):108-114.
12 Shamshiripour A, Golshani N, Shabanpour R, et al. Week-long mode choice behavior: dynamic random effects logit model[J]. Transportation Research Record, 2019, 2673(10): 736-744.
13 赵淑芝,赵贝.多因素影响下的城市居民出行行为时间价值[J].吉林大学学报,工学版,2011,41(1):46-50.
Zhao Shu-zhi, Zhao Bei.Value of travel time of urban resident under multifactor influence[J]. Journal of Jilin University (Engineering and Technology Edition), 2011,41(1):46-50.
14 张晨阳. 考虑潜在变量的西安居民短距离出行方式选择研究[D].西安:长安大学运输工程学院,2019.
Zhang Chen-yang. Research on short-distance travel mode choice behavior of Xi'an residents considering potential variables[D].Xian: College of Transportation Engineering, Chang'an University,2019.
15 Khan N A, Habib M A. Understanding variations in activity-based vehicle allocation decisions: a latent segmentation-based random parameter logit modeling approach[J]. Transportation Research Procedia, 2020, 48: 1505-1525.
[1] Zhuang-lin MA,Shan-shan CUI,Da-wei HU,Jin WANG. Travel mode choice of traditional car travelers after implementation of driving restriction policy [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1981-1993.
[2] Zhi-wei LIU,Zheng-yun SONG,Jian-rong LIU. Impact of shared autonomous vehicles on choice of subway station connection methods [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3424-3431.
[3] Bao-feng SUN,Yuan JIANG,Li-li ZHENG,Wan-kun CUI,Xin-xin REN. Modified design model of maintenance network for urban rail transit system with variable radius covering [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 526-534.
[4] HOU Xian-yao, CHEN Xue-wu. Use of public transit information market segmentation based onattitudinal factors [J]. 吉林大学学报(工学版), 2018, 48(1): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!