Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (12): 3424-3431.doi: 10.13229/j.cnki.jdxbgxb.20220912

Previous Articles    

Impact of shared autonomous vehicles on choice of subway station connection methods

Zhi-wei LIU1(),Zheng-yun SONG1,Jian-rong LIU2()   

  1. 1.School of Civil Engineering and Architecture,Wuhan Polytechnic University,Wuhan 430023,China
    2.School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,China
  • Received:2022-07-19 Online:2023-12-01 Published:2024-01-12
  • Contact: Jian-rong LIU E-mail:tonyliuzhiwei@whpu.edu.cn;ctjrliu@scut.edu.cn

Abstract:

In order to explore the heterogeneity of preferences of travel choice and the potential of shared autonomous vehicles to solve the last-mile connection problem of train trips, the last-mile travel mode choice of travelers based on the theory of planned behavior was analyzed. First, a latent variable model was established to obtain travelers' attitudes, subjective norms, perceived behavior control, and behavioral intentions toward autonomous vehicles. Secondly, latent psychological variables into the random parameter Logit model and conduct an empirical analysis was incorporated to study factors of the behavior of the last mile of train trip. Finally, an elasticity analysis was conducted to study the impact of travel time on the travel mode choice. The research results show that the random coefficient Logit model has higher fitness than the traditional multinomial Logit model. Travelers' preferences for travel time are heterogeneous. The travel time coefficient is not a fixed value but follows a normal distribution with a mean of -0.153 and a standard deviation of 0.520. Travelers' attitudes and perceived behavioral control towards autonomous vehicles have a significant impact on travel behavior. The probability of choosingshared autonomous vehicles increases by 0.799% with every 1% reduction in the travel time of autonomous vehicles; The probability of choosing shared autonomous vehicles increases by 1.155 % with every 1% increase in the travel time of shared bicycles.

Key words: engineering of communication and transportation system, last-mile travel, theory of planned behavior, random parameter Logit model(RPLM), autonomous vehicles

CLC Number: 

  • U121

Table 1

Indicator variables of psychological latent variables"

潜变量观测变量符号
态度是否赞同无人驾驶汽车有利ATT1
是否赞同无人驾驶汽车发展方向是积极ATT2
是否赞同无人驾驶汽车值得期待ATT3
社会规范亲戚朋友是否赞同我未来使用无人驾驶汽车SN1
亲戚朋友希望我未来能使用无人驾驶汽车SN2
朋友使用无人驾驶汽车也会影响我的决定SN3
感知行为控制使用无人驾驶汽车完全由自己决定PBC1
我可以承受无人驾驶汽车的出行费用PBC2
是否赞同未来用无人驾驶汽车出行机会多PBC3
行为意向是否赞同未来使用无人驾驶汽车BIU1
是否赞同未来购买无人驾驶汽车BIU2
是否赞同将无人驾驶汽车向身边亲戚朋友推荐BIU3

Table 2

Attributes and attributes levels of the choice sets"

属性属性水平水平数量
出行距离/m500、1000、15003
步行出行时间/min-30%、-10%、+20%∥根据距离计算行程时间(出行速度为4 km/h)3
共享自行车出行费用/元-30%、-10%、+20%∥估计出行费用(≤30 min为1.5元,31~60 min为3元)3
共享自行车出行时间/min-30%、-10%、+20%∥根据距离计算行程时间(出行速度为15 km/h)3
公交车出行费用/元-30%、-10%、+20%∥估计出行费用(1~2元)6
公交车出行时间/min-30%、-10%、+20%∥根据距离计算行程时间 (出行速度为18 km/h)3
公交车等待时间/min4、7、103
共享无人驾驶汽车出行费用/元-30%、-10%、+20%∥根据距离估计出行费用(2元/500 m)3
共享无人驾驶汽车出行时间/min-30%、-10%、+20%∥根据距离计算行程时间(出行速度为40 km/h)3
共享无人驾驶汽车等待时间/min2、5、83

Fig.1

Example of SP choice scenario"

Table 3

Reliability and validity test of sample"

潜变量观测变量Cronbach's αCR因子载荷AVE
ATTATT1

0.940

0.940

0.940

0.941

0.941

0.941

0.947

0.889

0.889

0.889

ATT20.949
ATT30.939
SNSN1

0.929

0.929

0.929

0.955

0.955

0.955

0.940

0.875

0.875

0.875

SN20.943
SN30.924
PBCPBC1

0.872

0.872

0.872

0.922

0.922

0.922

0.851

0.797

0.797

0.797

PBC20.920
PBC30.905
BIUBIU1

0.941

0.941

0.941

0.963

0.963

0.963

0.941

0.896

0.896

0.896

BIU20.961
BIU30.933

Table 4

Fitness statistics of confirmatory factor analysis"

项目χ2/dfRMSEACFITLISRMR
参考值1~3≤0.08≥0.900≥0.900<0.08
模型参数1.3350.060.9830.9770.024

Table 5

Estimation results of the MNLM and RPLM"

出行方式及变量多项Logit模型随机系数Logit模型
系数Z系数Z
出行时间均值-0.018***-2.85-0.153***-6.07
出行时间标准差0.520***16.22
等待时间-0.070***-5.65-0.056***-4.00
出行费用-0.133***-4.74-0.287***-8.31
步行性别-0.043 21-0.78-0.129-1.13
年龄(18~30岁)-0.002-0.020.1420.59
年龄(31~45岁)0.2411.640.3791.28
年龄(46~55岁)0.0030.01-0.047-0.13
高中及以下0.1801.000.3030.79
大专-0.493***-3.92-0.673**-2.44
本科0.172*1.680.3261.52
公务员、事业单位人员-0.081-0.71-0.078-0.33
企业员工-0.513***-4.24-0.479*-1.87
自由职业-0.154-1.05-1.033***-3.42
家庭月收入(5000元以下)-0.286***-3.19-0.244-1.32
家庭月收入(5000~10 000元)-0.075-0.800.2421.28
家庭月收入(10 000~20 000元)-0.129-1.14-0.041-0.18
是否有学龄儿童-0.169***-2.94-0.149-1.27
是否有驾照-0.009-0.140.1341.08
是否有小汽车0.0280.470.1991.61
家庭人口数0.068*1.94-0.056-0.88
共享自行车性别0.0781.430.0631.08
年龄(18~30岁)-0.043-0.38-0.005-0.04
年龄(31~45岁)0.524***3.690.521***3.55
年龄(46~55岁)0.1040.620.0610.35
高中及以下0.0520.290.0260.14
大专-0.636***-5.08-0.704***-5.43
本科0.181*1.790.219**2.10
公务员、事业单位人员-0.232**-2.07-0.296**-2.53
企业员工-0.490***-4.20-0.550***-4.56
自由职业0.0970.70-0.055-0.39
家庭月收入(5000元以下)-0.380***-4.23-0.445***-4.70
家庭月收入(5000~10 000元)0.0360.390.0660.67
家庭月收入(10 000~20 000元)0.1201.090.1421.22
是否有学龄儿童-0.100*-1.75-0.131**-2.18
是否有驾照-0.079-1.29-0.026-0.39
是否有小汽车0.118**2.040.142**2.33
家庭人口数0.098***2.960.147***4.12
共享无人 驾驶汽车性别0.0010.01-0.023-0.30
年龄(18~30岁)-0.505***-3.84-0.667***-4.53
年龄(31~45岁)0.424***2.730.2631.55
年龄(46~55岁)0.0550.300.1450.73
高中及以下0.500***2.600.466**2.18
大专-0.375**-2.54-0.366**-2.23
本科-0.132-1.11-0.084-0.64
公务员、事业单位人员-0.203-1.52-0.148-1.00
企业员工-0.388***-2.82-0.175-1.16
自由职业0.1010.630.1360.76
家庭月收入(5000元以下)-0.596***-5.42-0.550***-4.50
家庭月收入(5000~10 000元)-0.281**-2.47-0.237*-1.86
家庭月收入(10 000~20 000元)-0.187-1.41-0.145-0.98
是否有学龄儿童-0.189***-2.74-0.103-1.33
是否有驾照-0.111-1.50-0.115-1.33
是否有小汽车0.183**2.490.172**2.13
家庭人口数0.108***3.260.0381.03
ATT0.416***4.310.410***3.68
SN0.280***2.990.206*1.85
PBC-0.102-1.030.0560.45
BIU0.186**2.220.1281.27
对数似然值-4770.407-3894.067
伪平方值0.0630.308

Table 6

Direct elasticity and cross elasticity of travel time"

出行方式步行共享 自行车共享无人驾驶汽车公交车
步行-0.0300.0360.0780.067
共享自行车0.006-0.6761.1550.950
共享无人驾驶汽车0.0010.156-0.7990.237
公交车0.0010.2340.454-1.246
1 Mokhtarian P L. The times they are a-changing? what do the expanding uses of travel time portend for policy, planning, and life?[J]. Transportation Research Record, 2018, 2672(47): 1-11.
2 景鹏,隽志才,查奇芬. 考虑心理潜变量的出行方式选择行为模型[J]. 中国公路学报, 2014, 27(11): 84-92.
Jing Peng, Zhi-cai Juan, Zha Qi-fen. Incorporating psychological latent variables into travel mode choice model[J]. China Journal of Highway and Transport, 2014, 27(11): 84-92.
3 鞠鹏, 周晶, 徐红利, 等. 基于混合选择模型的汽车共享选择行为研究[J]. 交通运输系统工程与信息, 2016, 17(2): 7-13.
Ju Peng, Zhou Jing, Xu Hong-li, et al. Travelers' choice behavior of car sharing based on hybrid choice model[J]. Journal of Transportation Systems Engineering & Information Technology, 2017, 17(2): 7-13.
4 刘志伟,刘建荣,邓卫. 基于潜在类别的无人驾驶汽车选择行为[J]. 吉林大学学报: 工学版, 2021, 51(4): 1261-1268.
Liu Zhi-wei, Liu Jian-rong, Deng Wei. Impact of autonomous vehicle on travel mode choice behavior[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1261-1268.
5 姚荣涵, 梁亚林, 刘锴, 等. 考虑合乘的共享自动驾驶汽车选择行为实证分析[J]. 交通运输系统工程与信息, 2020, 20(1): 228-233.
Yao Rong-han, Liang Ya-lin, Liu Kai, et al. An empirical analysis on the choice behavior of shared autonomous vehicle considering ride-sharing[J]. Transportation Systems Engineering and Information, 2020, 20(1): 228-233.
6 Zhao R, Yang L, Liang X, et al. Last-mile travel mode choice: data-mining hybrid with multiple attribute decision making[J]. Sustainability, 2019, 11(23): No. 6733.
7 Moorthy A, de Kleine R, Keoleian G, et al. Shared autonomous vehicles as a sustainable solution to the last mile problem: a case study of ANN Arbor-Detroit area[J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 2017, 10(1): 328-336.
8 Yap M D, Correia G, van Arem B. Preferences of travellers for using automated vehicles as last mile public transport of multimodal train trips[J]. Transportation Research Part A: Policy and Practice, 2016, 94(12): 1-16.
9 Adnan M, Altaf S, Bellemans T, et al. Last-mile travel and bicycle sharing system in small/medium sized cities: user's preferences investigation using hybrid choice model[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(12): 4721-4731.
10 Baek K, Lee H, Chung J H, et al. Electric scooter sharing: How do people value it as a last-mile transportation mode?[J]. Transportation Research Part D: Transport and Environment, 2021, 90: No. 102642.
11 Yap M D, Correia G, van Arem B. Valuation of travel attributes for using automated vehicles as egress transport of multimodal train trips[J]. Transportation Research Procedia, 2015: 10: 462-471.
12 Moorthy A, de Kleine R, Keoleian G, et al. Shared autonomous vehicles as a sustainable solution to the last mile problem: a case study of ANN Arbor-Detroit area[J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 2017, 10(1): 328-336.
13 王灿, 王德, 朱玮, 等. 离散选择模型研究进展[J]. 地理科学进展, 2015, 34(10): 1275-1287.
Wang Can, Wang De, Zhu Wei, et al. Research progress of discrete choice models[J]. Progress in Geography, 2015, 34(10): 1275-1287.
14 Liu Z, Deng W, Chen Y. Influence of autonomous vehicles on short and medium distance mode choice for intercity travel[C]∥SAE Technical Paper, 2020-01-5200.
15 Bhat C R. Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences[J]. Transportation Research Part B: Methodological, 2003, 37(9): 837-855.
16 Jmp A, Proust M. Design of Experiments Guide[M]. Cary, NC: SAS Institute Inc, 2010.
17 Wang J, Wang X. Structural Equation Modeling: Applications using Mplus[M]. New York: John Wiley & Sons, 2019.
18 Zhou H, Norman R, Xia J C, et al. Analysing travel mode and airline choice using latent class modelling: a case study in western Australia[J]. Transportation Research Part A: Policy and Practice, 2020, 137(7): 187-205.
19 Olfindo R, Transport accessibility, residential satisfaction, and moving intention in a context of limited travel mode choice[J]. Transportation Research Part A: Policy and Practice, 2021, 145(3): 153-166.
20 Haboucha C J, Ishaq R, Shiftan Y. User preferences regarding autonomous vehicles[J]. Transportation Research Part C: Emerging Technologies, 2017, 78(5): 37-49.
21 Yuen K F, Huyen D T K, Wang X, et al. Factors influencing the adoption of shared autonomous vehicles[J]. International Journal of Environmental Research and Public Health, 2020, 17(13): No. 4868.
22 Aziz H A, Ukkusuri S V, Hasan S. Exploring the determinants of pedestrian-vehicle crash severity in New York city[J]. Accident Analysis & Prevention, 2013, 50(1): 1298-1309.
[1] Hong-tao LI,Lin-hong WANG,Jun-da LI. Influence of lighting and speed limit on visual search ability at highway intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2287-2297.
[2] Wei-tiao WU,Kun ZENG,Wei ZHOU,Peng LI,Wen-zhou JIN. Deep learning method for bus passenger flow prediction based on multi-source data and surrogate-based optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2001-2015.
[3] Zhen-liang LIU,Cun-bao ZHAO,Yun-peng WU,Mi-na MA,Long-shuang MA. Life⁃cycle seismic resilience assessment of highway bridge networks using data⁃driven method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1695-1701.
[4] Hong-fei JIA,Ying-jun XU,Li-li YANG,Nan WANG. League member selection and benefit distribution of commercial vehicles multi⁃modal transportation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1060-1069.
[5] Chao SUN,Hao-wei YIN,Wen-yun TANG,Zhao-ming CHU. Sensor deployment strategy and expansion inference of mobile phone data for traffic demand estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1070-1077.
[6] Xiu-feng CHEN,Yu-tong GUO,Yue-chen WU,Da-yi QU,Meng-yuan GAO. Multi-objective optimization of traffic signal timings based on dandelion algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3122-3129.
[7] Wen-jing WU,Kang-bei XIONG,Li-li YANG,Si-xu PU. Optimization of bus transfer preferential strategy in passenger corridor based on mental account theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3113-3121.
[8] Lang SONG,Jian WANG,Bin-yu YANG,Yong ZHU. Signal timing optimization model for left-turn intersection using double-exit lanes [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2826-2838.
[9] Hui-qiu LU,Feng ZHAO,Bo XIE,Yan-tao TIAN. Driver's lane change intention recognition in snow and ice environment based on neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 273-284.
[10] Wen-bo HUANG,Yan-yan CHEN,Shu-shan CHAI. Decision⁃making behavior of pedestrians in cold competition area under the intervention of mobile information [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 132-140.
[11] Xian-min SONG,Shu-tian YANG,Ming-xin LIU,Zhi-hui LI. Fluctuation characteristics and prediction method of bus travel time between stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1792-1799.
[12] Zhi ZHENG,Bo GENG,Fu-min WANG,Jun-hong DONG,Si-si WEI. Improvement of protective ability for existing low⁃grade concrete guardrail [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1362-1374.
[13] Wen-jing WU,Yong-bin ZHAN,Li-li YANG,Run-chao CHEN. Coordinated control method of variable speed limit in on⁃ramp area considering safety distance [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1315-1323.
[14] Hong-fei JIA,Zi-han SHAO,Li-li YANG. Ride⁃sharing matching model and algorithm of online car⁃hailing under condition of uncertain destination [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 564-571.
[15] Xing-hua LI,Fei-yu FENG,Cheng CHENG,Wei WANG,Peng-cheng TANG. Choice preference analysis and modeling of ridesplitting service [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 578-584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!