Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (2): 494-505.doi: 10.13229/j.cnki.jdxbgxb.20220414

Previous Articles    

Corrosion deterioration and equivalent relationship between natural exposure and salt spray accelerated environment of reinforced concrete

Qiong FENG1(),Hao-zheng TIAN1,Hong-xia QIAO1,2(),Teng-fei NIAN1,Wen-wen HAN1   

  1. 1.School of Civil Engineering,Lanzhou University of Technology,Lanzhou 730050,China
    2.Western Ministry of Civil Engineering Disaster Prevention and Mitigation Engineering Research Center,Lanzhou University of Technology,Lanzhou 730050,China
  • Received:2022-04-14 Online:2024-02-01 Published:2024-03-29
  • Contact: Hong-xia QIAO E-mail:fengqiong.1985@163.com;qhxlut7706@163.com

Abstract:

In view of the problem of serious disease in the western saline soil region, this paper selects a typical environment in the western saline soil region to carry out natural exposure test of reinforced concrete, and simulates the local corrosion environment to design indoor salt spray dry and wet cycle acceleration test. The corrosion current density and concrete damage degree were used to characterize the deterioration laws of reinforcement and protective layer. Based on Weibull distribution function, the deterioration model of reinforced concrete under the two environments were established, and the competitive failure analysis was carried out. Finally, the equivalent relationship between the two environments were established by using the equivalent condition of reliability and the concept of equivalent. The results show that the deterioration law of reinforced concrete under in indoor acceleration is similar to that under natural exposure, and the laws are the result of the interaction of strengthening and deterioration effects. The Weibull distribution function can effectively describe the deterioration process of reinforced concrete under indoor acceleration and natural exposure environment. The time of internal reinforcement deterioration to median life is slightly earlier than that of the concrete protective layer. Indoor salt spray dry and wet cycles accelerated deterioration of reinforced concrete for 1 day can simulate 12.7 days of natural exposure deterioration in saline soil region.

Key words: civil engineering material, reinforced concrete, western saline soil region, corrosion deterioration, Weibull distribution functions, equivalence relations

CLC Number: 

  • TU528.1

Table 1

Chemical composition of cementitious materials"

材料SiO2Fe2O3Al2O3CaOMgOTiO2SO3K2OMnOIL
水泥26.34.410.649.23.21.02.01.20.41.7
粉煤灰45.46.630.28.91.81.31.91.50.22.2

Table 2

Mix proportion of concrete"

材料含量材料含量
水泥315158
细骨料634粉煤灰135
粗骨料1167减水剂适量

Fig.1

Schematic diagram of reinforced concrete specimen"

Table 3

Soluble salt composition in saline soil areas of Golmud, Qinghai"

成分CO32-HCO3-SO42-Cl-Ca2+Mg2+Na++K+
离子含量/(mg·kg-1591811564881016584039722887

Table 4

Correspondence between corrosion current density and corrosion rate of steel bars"

icorr/ (μA·cm-2icorr<0.20.2≤icorr<0.50.5≤icorr<1.01.0≤icorr<1010≤icorr
腐蚀速率状态

钝化

状态

中等极高

Fig.2

Polarization curves under dry and wet cycles of salt spray"

Fig.3

Polarization curves under natural exposure to decay environment"

Fig.4

Evolution pattern of icorr with the number of wet and dry cycles"

Fig.5

Evolution pattern of icorr with exposure time"

Fig.6

Evolution of Dt with the number of wet and dry cycles"

Fig.7

Evolution of Dt with exposure corrosion time"

Fig.8

Hypothesis test of Dt under wet and dry cycles of salt spray"

Fig.9

Hypothesis test of Dt under natural exposure"

Fig.10

Hypothesis testof icorr under the wet and dry cycles of salt spray"

Fig.11

Hypothesis testof icorr under natural exposure"

Fig.12

Regression analysis results of Dt under dry and wet cycles of salt spray"

Fig.13

Regression analysis of Dt under natural exposure"

Fig.14

Regression analysis results of icorr under the dry and wet cycles of salt spray"

Fig.15

Regression analysis results of icorr under natural exposure"

Table 5

Parameter estimation results"

相关参数混凝土损伤度腐蚀电流密度
干湿循环自然暴露干湿循环自然暴露
m2.2753.1763.8015.325
θ173.53068.6167.71917.3

Fig.16

Reliability function curve of Dtunder dry and wet cycles of salt spray"

Fig.17

Reliability function curve of Dt under natural exposure"

Fig.18

Reliability function curve of icorr under dry and wet cycles of salt spray"

Fig.19

Reliability function curve of icorr under natural exposure"

Fig.20

Competitive failure under dry and wet cycles of salt spray"

Fig.21

Competitive failure under natural exposure"

1 余波,毋铭,詹雷颖. 混凝土中钢筋的腐蚀速率模型及电化学参数分析[J]. 混凝土, 2015(8): 20-25.
Yu Bo, Wu Ming, Zhan Lei-ying. Corrosion rate model and electrochemical parameters analysis of reinforcing steel in concrete[J]. Concrete, 2015(8): 20-25.
2 刘军,邢锋. 盐雾环境下氯离子在混凝土中的扩散[J]. 深圳大学学报: 理工版, 2010, 27(2): 192-198.
Liu Jun, Xing Feng. Diffusion of chloride ions in concrete under salt spray environment[J]. Journal of Shenzhen University (Science and Technology Edition), 2010, 27(2): 192-198.
3 关博文,杨涛,於德美,等. 干湿循环作用下钢筋混凝土氯离子侵蚀与寿命预测[J]. 材料导报, 2016, 30(10): 152-157.
Guan Bo-wen, Yang Tao, Yu De-mei, et al. Prediction of chloride ion erosion and lifetime of reinforced concrete under the action of dry and wet cycles[J]. Materials Reports, 2016, 30(10): 152-157.
4 张云升,黄冉,杨永敢,等. 杂散电流-盐卤耦合作用下钢筋混凝土腐蚀行为[J]. 建筑材料学报, 2017, 20(3): 449-455.
Zhang Yun-sheng, Huang Ran, Yang Yong-gan, et al. Corrosion behavior of reinforced concrete under the action of stray current-salt brine coupling[J]. Journal of Building Materials, 2017, 20(3): 449-455.
5 宿晓萍, 王清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报: 工学版, 2015, 45(1): 112 -120.
Su Xiao-ping, Wang Qing. Corrosion damage of concrete under multi-salt soaking, freezing-thawing and dry-wet cycles[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(1): 112 -120.
6 涂永明,吕志涛. 应力状态下混凝土结构的盐雾侵蚀试验研究[J]. 工业建筑, 2004, 34(5): 1-3.
Tu Yong-ming, Lv Zhi-tao. Experimental study on salt spray erosion of concrete structures under stress condition [J]. Industrial Construction, 2004, 34(5): 1-3.
7 王元站,周海锋. 盐雾环境下受荷混凝土中氯离子扩散试验[J]. 材料科学与工程, 2013, 31(5): 645-650.
Wang Yuan-zhan, Zhou Hai-feng. Chloride ion diffusion test in salt spray loaded concrete[J]. Materials Science and Engineering, 2013, 31(5): 645-650.
8 李林,丁士君,李镜培,等. 不同环境条件下混凝土构件氯离子侵蚀试验[J]. 哈尔滨工业大学学报, 2016, 48(12): 28-33.
Li Lin, Ding Shi-jun, Li Jing-pei, et al. Experiments on chloride ion erosion of concrete members under different environmental conditions[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 28-33.
9 Maslehuddin M, Alzaharni M M, Aldulaijan S U, et al. Effect of steel manufacturing process and atmospheric corrosion on the corrosion-resistance of steel bars in concrete[J]. Cement and Concrete Composites, 2002, 24(1): 151-158.
10 徐存东,张鹏,连海东,等. 基于Weibull分布的灌区混凝土建筑物寿命预测[J]. 硅酸盐通报, 2020, 39(5): 1483-1490.
Xu Cun-dong, Zhang Peng, Lian Hai-dong, et al. Life prediction of concrete buildings in irrigation areas based on Weibull distribution[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1483-1490.
11 赵文帅. 考虑材料属性二次Weibull分布的混凝土细观模型[D]. 济南: 山东大学土建与水利学院, 2021.
Zhao Wen-shuai. Concrete mesoscopic model considering the quadratic weibull distribution of material pr-operties[D]. Ji'nan: School of Civil Engineering, Shandong University, 2021.
12 宋鲁光,孙伟,高建明.干湿循环条件下矿渣混凝土氯离子表观扩散系数的影响因素研究[J]. 混凝土, 2015(11): 4-11.
Song Lu-guang, Sun Wei, Gao Jian-ming. Study on the factors influencing the apparent diffusion coefficient of chloride ions in slag concrete under dry and wet cycle conditions[J]. Concrete, 2015(11): 4-11.
13 Qin H L, Zhang H, Sun D T. Corrosion behavior of the friction-stirwelded joints of 2A14-T6 aluminu-m alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(6): 627-638.
14 蒋仁言. 威布尔模型族-特性、参数估计和应用[M]. 北京: 科学出版社, 1998.
15 Weibull W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18(3): 293-297.
16 茆诗松,汤银才,王玲玲. 可靠性统计[M]. 北京: 高等教育出版社, 2008.
17 Erdogdu Ş, Bremner T W, Kondratova I L. Accelerated testing of plain and epoxy-coated reinforcement in simulated seawater and chloride solutions[J]. Cement Concrete Research, 2001, 31(6): 861-867.
18 Santhanam M, Cohen M D, Olek J. Mechanism of sulfate attack: a fresh look-Part 1. summary of experi-mental results[J]. Cement and Concrete Research, 2002, 32(6): 915-921.
19 Alamoudi O S, Maslehuddin M. The effect of chloride and sulfate ions on reinforcement corrosion[J]. Cement and Concrete Research, 1993, 23(1): 139-146.
20 王甲春,阎培渝. 海洋环境下钢筋混凝土中钢筋锈蚀的概率[J]. 吉林大学学报: 工学版, 2014, 44(2): 352-357.
Wang Jia-chun, Yan Pei-yu. Probabilistic analysis of rebar rust in concrete under marine environment[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(2): 352-357.
21 王鹏辉,乔宏霞,冯琼,等. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报: 工学版, 2020, 50(1): 191-201.
Wang Peng-hui, Qiao Hong-xia, Feng Qiong, et al. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 191-201.
22 张俊喜,易博,林德源,等. 盐渍土环境下钢筋混凝土腐蚀的电化学研究[J]. 建筑材料学报, 2016, 19(2): 390-396.
Zhang Jun-xi, Yi Bo, Lin De-yuan, et al. Electrochemical study of corrosion of reinforced concrete in saline soil environment[J]. Journal of Building Materials, 2016, 19(2): 390-396.
23 李隽,高培伟,刘宏伟,等. 混凝土在浸泡和干湿循环作用下的抗氯盐侵蚀性能[J]. 南京理工大学学报, 2017, 41(5): 666-670.
Li Jun, Gao Pei-wei, Liu Hong-wei, et al. Resistance of concrete to chloride salt erosion under immersion and wet and dry cycles[J]. Journal of Nanjing University of Technology, 2017, 41(5): 666-670.
[1] Er-gang XIONG,Zhong-wen GONG,Jia-ming LUO,Tuan-jie FAN. Experiment on cracks in reinforced concrete beams based on digital image correlation technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1094-1104.
[2] Ya-zhen SUN,Zhi ZHENG,Wei-ming HUANG,Jin-chang WANG. Structural analysis of cement pavement with cracks based on state⁃space method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 188-196.
[3] Yi-hong WANG,Qiao-luo TIAN,Guan-qi LAN,Sheng-fa YAO,Jian-xiong ZHANG,Xi LIU. Experimental research on the mechanical properties of concrete column reinforced with 630 MPa high⁃strength steel under large eccentric loading [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2626-2635.
[4] Er-gang XIONG,Han XU,Ci TAN,Jing WANG,Ruo-yu DING. Shear strength of reinforced concrete beams based on elastoplastic stress field theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 259-267.
[5] Qian-hui PU,Jing-wen LIU,Gang-yun ZHAO,Meng YAN,Xiao-bin LI. Theoretical analysis of bearing capacity of concrete eccentric compressive column reinforced by HTRCS [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 606-612.
[6] Ning⁃hui LIANG,Qing⁃xu MIAO,Xin⁃rong LIU,Ji⁃fei DAI,Zu⁃liang ZHONG. Determination of fracture toughness and softening traction⁃separation law of polypropylene fiber reinforced concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1144-1152.
[7] Tian⁃lai YU,Hai⁃sheng LI,Wei HUANG,Si⁃jia WANG. Shear strengthening of reinforced concrete beam with prestressed steel wire ropes [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1134-1143.
[8] DAI Yan, NIE Shao-feng, ZHOU Tian-hua. Finite element analysis of hysteretic behavior of square steel tube confined steel reinforced concrete column steel frame ring beam joint [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1426-1435.
[9] YU Tian-lai, LIU Xing-guo, YAO Shuang, Muhammad Mansour. Fatigue performance of RC beams strengthened with externally prestressed CFRP tendons [J]. 吉林大学学报(工学版), 2016, 46(6): 1867-1873.
[10] GUO Jun-ping, DENG Zong-cai, LU Hai-bo, LIN Jin-song. Experiment on shear behavior of reinforced concrete beams strengthened with prestressed high strength steel wire mesh [J]. 吉林大学学报(工学版), 2014, 44(4): 968-977.
[11] WANG Jia-chun, YAN Pei-yu. Probabilistic analysis of rebar rust in concrete under marine environment [J]. 吉林大学学报(工学版), 2014, 44(2): 352-357.
[12] ZHONG Chun-ling, LI Na, MENG Guang-wei. Temperature effect on mechanical behaviors of continuously reinforced concrete pavement [J]. 吉林大学学报(工学版), 2014, 44(01): 68-73.
[13] LIU Han-bing, ZHENG Ji-guang, ZOU Pin-de. Calculation on bearing capacity of eccentric compression reinforced concrete short column with circular combined-section [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 159-163.
[14] MENG Song-He, GAO Hui-Ting, SUN Li-An, SHI Hong-Jun. Effect of silica fumeslag on performance of polypropylene fiber concrete [J]. 吉林大学学报(工学版), 2010, 40(增刊): 214-0217.
[15] BO Ming-Yuan, YAO Ji-Tao. Reliability of reinforced concrete structural element [J]. 吉林大学学报(工学版), 2010, 40(增刊): 218-0221.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!