Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1501-1511.doi: 10.13229/j.cnki.jdxbgxb.20220951

   

Tire grounding mechanical model on wet roads

Cong-zhen LIU1(),Gao CHEN1,Hong-zhu LIU1,Qiang MA1,Cheng-wei XU1,Hui MENG1,Guo-lin WANG2   

  1. 1.School of Transportation and Vehicle Engineering,Shandong University of Technology,Zibo 255022,China
    2.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China
  • Received:2022-07-13 Online:2024-06-01 Published:2024-07-23

Abstract:

In order to study the grounding mechanical characteristics of tire under partial hydroplaning state, the coupling Euler-Lagrange hydroplaning simulation model was established with 205/55 R16 passenger car tires as the research object, and the orthogonal experimental design method was used to create the experimental scheme. With range analysis, partial correlation analysis and multiple linear regression analysis, the "University of Arizona Tire Model" was established for different working conditions of wet road tire sideways longitudinal slip. Comparative analysis shows that the model can accurately predict the grounding mechanical properties of tires on wet slippery road, which provides a theoretical reference for the study of the hydroplaning performance of tires under multiple working conditions.

Key words: automobile engineering, tire hydroplaning, grounding mechanical characteristics, sideslip and camber, UA model

CLC Number: 

  • U463.341

Fig.1

Finite element model of tire and pavement"

Fig.2

Static loading test"

Fig.3

Curve of Load and tire compression deformation"

Fig.4

Euler water film model"

Fig.5

Flow model"

Fig.6

Tire SAE coordinate system"

Fig.7

Variation of contact patch under different loads"

Fig.8

Variation of tire vertical force and contact patch with load"

Fig.9

Variation of tire vertical force and contact patch with inflation pressures"

Fig.10

Variation of vertical force and contact patch with water film thicknesses"

Fig.11

Variation of vertical force and contact patch with groove depths"

Fig.12

Variation of vertical force and contact patch area with velocities"

Fig.13

Hydrodynamic pressure at different slip angles"

Fig.14

Critical hydroplaning speed of tire at different slip angles"

Fig.15

Hydrodynamic pressure at different camber angles"

Fig.16

Critical hydroplaning speed of tire at different camber angles"

Table 1

Orthogonal test factor level"

水平因素
x1/Nx2/MPax3/mmx4/mmx5/(km·h-1
14 0000.2343.640
24 5000.2565.650
35 0000.2787.660
45 5000.29109.670

Table 2

Orthogonal test results"

试验编号试验参数试验指标
x1x2x3x4x5FxFyFz
1111111 104.816 41 865.509 43 620.265 2
212222936.068 81 584.363 22 941.541 1
313333429.401 71 036.253 11 762.497 9
414444183.030 4212.911 0473.129 2
521234610.756 5800.652 91 611.070 2
622143981.650 11 701.306 13 120.232 6
723412903.351 71 502.759 62 845.741 7
8243211 198.141 71 962.085 23 757.652 7
9313421 397.311 81 832.173 83 684.340 5
10324311 624.036 72 026.572 14 198.854 5
1133124900.835 01 331.454 92 590.056 5
1234213920.261 61 645.599 33 024.884 2
13414231 119.515 31 422.594 13 030.685 2
1442314819.354 6910.036 51 901.389 9
15432412 041.706 22 346.287 44 976.508 0
16441321 683.228 92 342.364 24 644.339 8

Table 3

Range analysis results of longitudinal force"

试验结果x1x2x3x4x5
K1j2 653.317 34 232.400 04 670.530 53 747.784 25 968.700 9
K2j3 693.900 04 361.110 24 508.793 14 154.560 84 919.961 3
K3j4 842.445 14 275.294 63 844.209 74 347.423 93 450.828 7
K4j5 663.804 93 984.662 63 829.934 14 603.698 62 513.976 6
Rj3 010.487 6376.447 6840.596 4855.914 43 454.724 3

Table 4

Range analysis results of lateral force"

试验结果x1x2x3x4x5
K1j4 699.036 85 920.930 26 320.864 55 923.904 88 200.454 2
K2j5 966.803 86 222.277 96 376.902 76 300.497 37 261.660 7
K3j6 835.800 16 216.755 05 740.548 86 205.842 35 805.752 6
K4j7 021.282 26 162.959 75 164.836 76 092.678 43 255.055 4
Rj2 322.245 4301.347 71 212.066 0376.592 64 945.398 9

Table 5

Range analysis results of vertical force"

试验结果x1x2x3x4x5
K1j8 797.433 411 946.361 113 974.894 111 392.281 016 553.280 4
K2j11 334.697 212 162.018 112 554.003 512 319.935 514 115.963 1
K3j13 498.135 712 174.804 111 105.881 012 216.762 410 938.299 9
K4j14 552.922 911 900.005 910 548.410 612 254.210 36 575.645 8
Rj5 655.489 5274.798 23 426.483 5957.654 59 977.634 6

Fig.17

Trend chart of factors and indicators"

Table 6

Partial correlation analysis results"

参数纵向力侧向力垂向力
相关性显著性相关性显著性相关性显著性
轮胎载荷0.98200.85900.9490
充气压力-0.3870.2140.1520.6360.0190.954
水膜厚度-0.850-0.8270.0010.8320.001
沟槽深度0.8130.0010.0880.786-0.3420.277
行驶速度-0.9860-0.96100.9320

Table 7

Goodness of fit test"

试验指标R2F显著性
Fx0.983156.4581.294 3×10-9
Fy0.94366.4919.549 3×10-8
Fz0.971135.5384.607 2×10-9

Table 8

Comparison of results"

参数UA模型仿真模型误差/%
纵向力/N740.373686.0297.3
侧向力/N1 121.9281 175.9444.8
1 Dolwichai P, Limtragool J. The effect of tire treads shape to stick-slip phenomenon in frictional contact[C]∥The 20th Conference of MENETT, Nakorn Ratchasima, Thailand, 2006: 18-20.
2 El-Sayegh Z, El-Gindy M. Cornering characteristics of a truck tire on wet surface using finite element analysis and smoothed-particle hydrodynamics[J]. International Journal of Dynamics and Control, 2018, 6(4): 1567-1576.
3 El-Sayegh Z, El-Gindy M. Sensitivity analysis of truck tyre hydroplaning speed using FEA-SPH model[J]. International Journal of Vehicle Systems Modelling and Testing, 2017, 12(1/2): 143-161.
4 Jeong J Y, Jeong H Y. Hydroplaning simulation of a tire in thin water using fem and an estimation method and its application to skid number estimation[J]. International Journal of Automotive Technology, 2013, 14(2): 325-331.
5 Ong G P, Fwa T F. Mechanistic interpretation of braking distance specifications and pavement friction requirements[J]. Transportation Research Record, 2010, 2155(1): 145-157.
6 Fwa T F, Anupam K, Ong G P. Relative effectiveness of grooves in tire and pavement for reducing vehicle hydroplaning risk[J]. Transportation Research Record, 2010, 2155(1): 73-81.
7 陈磊,周海超,潘公宇. 轮胎花纹凹坑非光滑表面对抗滑水性能的影响分析[J]. 现代制造工程, 2019, 19(1): 23-31.
Chen Lei, Zhou Hai-chao, Pan Gong-yu. Influence analysis of bionic pit non-smooth surface pattern on tire hydroplaning performance[J]. Modern Manufacturing Engineering, 2019, (1): 23-31.
8 杨建,王国林,周海超,等. 仿生非光滑花纹沟对轮胎抗滑水性能的影响[J]. 华中科技大学学报: 自然科学版, 2015, 43(2): 21-25.
Yang Jian, Wang Guo-lin, Zhou Hai-chao, et al. Study on influence of bionic non-smooth pattern groove on tire anti-hydroplaning performance[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(2): 21-25.
9 Zhou H C, Zhai H H, Ding Y M, et al. Numerical investigation of passive control flow to improve tire hydroplaning performance using a V-riblet non-smooth surface[J]. Advances in Mechanical Engineering, 2017, 9(11): 1-13.
10 黄晓明,刘修宇,曹青青,等. 积水路面轮胎部分滑水数值模拟[J]. 湖南大学学报: 自然科学版, 2018, 45(9): 113-121.
Huang Xiao-ming, Liu Xiu-yu, Cao Qing-qing, et al. Numerical simulation of tire partial hydroplaning on flooded pavement[J]. Journal of Hunan University (Natural Sciences), 2018, 45(9): 113-121.
11 季天剑,黄晓明,刘清泉. 部分滑水对路面附着系数的影响[J]. 交通运输工程学报, 2003, 3(4): 10-12.
Ji Tian-jian, Huang Xiao-ming, Liu Qing-quan. Part hydroplaning effect on pavement friction coefficient[J]. Journal of Traffic and Transportation Engineering, 2003, 3(4): 10-12.
12 董斌. 部分滑水条件下高速公路车辆行驶安全性研究[D].重庆: 重庆交通大学土木建筑学院, 2011.
Dong Bin. Study of safety drive on expressway under partly hydroplaning[D]. Chongqing: School of Civil Engineering and Architecture, Chongqing Jiaotong University, 2011.
13 Fiala E. Seitenkraefte am rollenden Luftreifen[J]. Verein Deutscher Ingenieure, 1954, 96(29): 973-979.
14 刘青,郭孔辉,陈秉聪. 轮胎刷子模型分析Ⅰ.稳态侧偏刷子模型[J]. 农业机械学报, 2000, 31(1): 19-22.
Liu Qing, Guo Kong-hui, Chen Bing-cong. Review of tire brush models I. Steady state cornering brush models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(1): 19-22.
15 郭孔辉. 汽车轮胎动力学[M]. 北京: 科学出版社, 2018.
16 郭孔辉,李宁,庄晔. 轮胎侧向力影响因素试验[J]. 农业机械学报, 2011, 42(12): 1-5.
Guo Kong-hui, Li Ning, Zhuang Ye. Test on factors of tire lateral force[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 1-5.
17 Horne W B, Joyner U T. Pneumatic tire hydroplaning and some effects on vehicle performance[J]. SAE Transactions, 1966, 74: 623-650.
18 Horne W B, Yager T J, Ivey D L. Recent studies to investigate effects of tire footprint aspect ratio on dynamic hydroplaning speed[J]. ASTM Special Technical Publication, 1986, 929: 26-46.
19 Gim G, Nikravesh P E. An analytical model of pneumatic tyres for vehicle dynamic simulations. Part 1: pure slips[J]. International Journal of Vehicle Design, 1990, 11(6): 589-618.
20 Gim G. An analytical model of pneumatic tyres for vehicle dynamic simulations. Part 2: comprehensive slips[J]. International Journal of Vehicle Design of Vehicle Design, 1991, 12(1): 19-39.
21 周海超,陈磊,翟辉辉,等. 基于CFD的轮胎滑水及其性能影响因素分析[J]. 重庆交通大学学报: 自然科学版, 2017, 36(1): 110-116.
Zhou Hai-chao, Chen Lei, Zhai Hui-hui, et al. Research on flow field and influencing factors of tire hydroplaning based on CFD method[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(1): 110-116.
22 张丽霞,郑超艺,杨朝会,等. 湿滑路面汽车轮胎滑水性能影响因素仿真[J]. 科学技术与工程, 2020, 20(30): 12589-12595.
Zhang Li-xia, Zheng Chao-yi, Yang Chao-hui, et al. Simulation on factors affecting hydroplaning performance of vehicle tire on wet pavement[J]. Science Technology and Engineering, 2020, 20(30): 12589-12595.
23 庄楚强,何春雄. 应用数理统计基础[M]. 广州: 华南理工大学出版社, 2006.
24 王婷婷. 严寒地区居民用能行为对住宅能耗影响的偏相关分析[J]. 建筑与文化, 2021, 18(10): 195-197.
Wang Ting-ting. Partial correlation analysis of the influence of residents' energy-using behavior on energy consumption in severe cold region[J]. Architecture and Culture, 2021, 18(10): 195-197.
[1] Xiao⁃ming HUANG,Qing⁃qing CAO,Xiu⁃yu LIU,Jia⁃ying CHEN,Xing⁃lin ZHOU. Simulation of vehicle braking performance on rainy daysbased on pavement surface fractal friction theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 757-765.
[2] ZHENG Xue-lian, LI Xian-sheng, REN Yuan-yuan, YANG Meng. Rollover stability analysis of tank vehicle impacted by transient liquid sloshing [J]. 吉林大学学报(工学版), 2014, 44(3): 625-630.
[3] LIU Yu-mei,SU Jian,CAO Xiao-ning,XIONG Wei,SONG Xue-zhong. Study on fault diagnosis methods for automobile suspensions based on fuzzy mathematics [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 220-0224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!