Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (7): 1831-1843.doi: 10.13229/j.cnki.jdxbgxb.20221159

Previous Articles    

Analysis and optimization of internal flow field of diffuser structure of cooling system based on Fluent

Xin-hui LIU(),Zhi-lin XIANG,Peng TAN,Wei CHEN,Ji-yu FENG   

  1. School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2022-12-08 Online:2024-07-01 Published:2024-08-05

Abstract:

In order to solve the problem of insufficient gas diffusion in air-cooled heat dissipation system, this paper proposes a solution of installing diversion plates inside the expansion structure. The fluid dynamics software Fluent was used to build the simulation model of the expanded flow structure and analyze the internal flow field of the expanded flow structure. The conclusions are as follows: The local head loss of fluid in different planes of the diffuser structure is 3.24 m and 1.21 m respectively. In the simplified model, the heat dissipation efficiency of fluid with low speed and large area distribution is 8% higher than that of fluid with high speed and small area distribution. The orthogonal test is used to study the influence of the deflector parameters on the heat dissipation efficiency. The results show that for the heat dissipation efficiency of the system, the order of the degree of influence from large to small is: the shortest distance L between the deflector group and the inlet end, the radius R of the surface hole of the deflector, the inclination angle between the deflector and the flow direction θ, the projection length h of the deflector in the flow direction, and the shortest distance d of the deflector in the direction perpendicular to the flow direction. The experimental results show that the cooling efficiency of the heat dissipation system is increased by 7.67%, 3.62%, 4.26% and 6.93% when the fan is driven by output voltage of 3, 4, 5, 6 V respectively to produce cold fluid.

Key words: fluid machinery and engineering, deflector, headloss, orthogonal test, Fluent

CLC Number: 

  • TK89

Fig.1

Schematic diagram of test bench"

Fig.2

Schematic diagram of diffuser"

Fig.3

Velocity profile"

Fig.4

Velocity nephogram of the diffuser outlet"

Table 1

Simulation data of the inlet and outlet"

平均压力/Pa平均速度/(m·s-1
入口端-10143.29
出口端39113.03

Fig.5

Velocity distribution of different planes from the center to the boundary"

Table 2

Simulation data of different schemes"

试验气体出口温度/℃液体出口温度/℃

换热面

面积/m2

流体与壁面温差/℃
方案一23.12579.8821.58×10-43.296
方案二24.90679.8712.86×10-43.159

Table 3

Table of Factors and levels required for orthogonal test"

序号因素水平1水平2水平3
ALz/mm20、802080
Bd/mm1020/
Ch/mm1020/
DR/mm035
Eθ/(°)203045

Table 4

Table of orthogonal test results"

试验组别因素

X方向平均速度

Vxˉ/(m?s-1)

Z方向平均速度

Vzˉ/(m?s-1)

ABCDE
1111114.6744.971
2122224.0415.260
3121334.4525.222
4112314.4665.390
5212324.4154.582
6221133.9814.458
7212124.6254.428
8221214.2634.309
9312325.1605.648
10322315.1484.893
11321214.5724.679
12312134.8704.657
13311235.0584.592
14221134.4053.505
15212113.8085.231
16311325.0714.576

Fig.6

X-Y plane velocity streamline diagram"

Fig.7

Simulation flow charts of different schemes"

Fig.8

Structural parameter diagram of the diversion plate"

Fig.9

Value range of the θ1"

Table 5

Range analysis table of orthogonal test"

结果水平因素
ABCDE
X方向平均速度Vxˉ/(m?s-1)1KˉA1=4.408KˉB1=4.683KˉC1=4.560KˉD1=4.394KˉE1=4.489
2KˉA2=4.250KˉB2=4.409KˉC2=4.567KˉD2=4.483KˉE2=4.663
3KˉA3=5.002//KˉD3=4.786KˉE3=4.553
RiRA=0.752RB=0.274RC=0.007RD=0.392RE=0.11
Z方向平均速度Vzˉ/(m?s-1)1KˉA1=5.145KˉB1=4.897KˉC1=4.539KˉD1=4.542KˉE1=4.912
2KˉA2=4.419KˉB2=4.618KˉC2=5.010KˉD2=4.711KˉE2=4.839
3KˉA3=4.841//KˉD3=5.052KˉE3=4.487
RiRA=0.726RB=0.279RC=0.471RD=0.51RE=0.425

Fig.10

Comparison chart of R value of each evaluation index"

Table 6

Optimal level table of each evaluation index"

因素最优水平
X方向平均速度Z方向平均速度
A31
B11
C22
D33
E21

Table 7

Comprehensive scoring table for each evaluation factor"

综合评分ABCDE
Y14.8904.8124.5474.4834.743
Y24.3514.5344.8334.6194.812
Y34.893//4.9454.513
R0.5420.2780.2860.4620.299

Fig.11

Comparison chart of comprehensive score value of each factor"

Fig.12

R value comparison chart"

Fig.13

Section of optimization scheme"

Fig.14

Comparison of various plane velocity nephogram"

Fig.15

Cloud Chart of Exit Velocity"

Table 8

Table of simulation data of the optimized structure"

端口平均压力/Pa平均速度/(m?s-1
入口-91243.29
出口59711.93

Fig.16

Experimental flow chart"

Fig.17

Comparison diagram of experimental data curves before and after optimization"

Table 9

Improved heat dissipation efficiency under different fan output voltages"

输出电压/VQaiV/(J?s-1)QbiV/(J?s-1)aiV/%
3-5 709.56-6 147.417.67
4-7 741.19-8 021.413.62
5-9 037.22-9 422.534.26
6-9 352.48-10 000.496.93
1 Salleh M B, Kamaruddin N M, Mohamed-Kassim Z. The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine[J]. Energy Conversion and Management, 2020,226:No.113584.
2 胡兴军,张靖龙,罗雨霏. 冷却管结构及进气方向对空冷中冷器性能的影响[J]. 吉林大学学报:工学版, 2021, 51(6):1933-1942.
Hu Xing-jun, Zhang Jing-long, Luo Yu-fei. Investigation on influence of cooling tube structure and airflow speed on cold side performance of air⁃cooled charge air cooler[J]. Journal of Jilin University: (Engineering Edition), 2021, 51 (6):1933-1942.
3 张长天,刘景源. 导流片结构参数对四通道环形进气先进旋涡燃烧室性能影响[J]. 航空工程进展,2021,12(4): 138-146.
Zhang Chang-tian, Liu Jing-yuan. Effect of deflector structural parameters on the performance of four channel annular inlet advanced vortex combustor[J]. Progress of Aeronautical Engineering, 2021, 12 (4):138-146.
4 阴继翔,王涛,易文杰. 导流板倾角对“V”型直接空冷单元空气流动与换热特性的影响[J]. 热科学与技术, 2021, 20(5):424-430.
Yin Ji-xiang, Wang Tao, Yi Wen-jie. Effect of deflector inclination on air flow and heat transfer characteristics of "V" direct air cooling unit[J]. Thermal Science and Technology, 2021, 20 (5):424-430.
5 刘飞,赵一凡,牛卫箭. 发动机进气系统结构优化设计与仿真研究[J]. 机械设计,2020, 37(7):80-86.
Liu Fei, Zhao Yi-fan, Niu Wei-jian. Structural optimization design and Simulation of engine intake system[J]. Mechanical Design, 2020, 37(7):80-86.
6 Huang X, Lin C, Kong Y. Effects of geometric structures of air deflectors on thermo-flow performances of air-cooled condenser[J]. International Journal of Heat & Mass Transfer, 2018, 118:1022-1039.
7 Fatahian E, Ismail F, Ishak M, et al. An innovative deflector system for drag-type Savonius turbine using a rotating cylinder for performance improvement[J]. Energy Conversion and Management, 2022, 257:No.115453.
8 李永业,庞雅琦,宋晓腾. 导流条安放角度对管道车间断面螺旋流流速特性的影响[J]. 农业工程学报, 2021, 37(5):87-94.
Li Yong-ye, Pang Ya-qi, Xiao-teng Somg. Influence of setting angle for guide bar on velocity characteristics of spiral flow in cross-sections between piped carriages[J]. Journal of Agricultural Engineering, 2021, 37(5):87-94.
9 李雪亮,伍钒,王田天,等. 列车空调出风口导流板高度对冷凝风量影响研究[J]. 空气动力学学报,2022(6):155-162.
Li Xue-liang, Wu Fan, Wang Tian-tian, et al. Influence of deflector height on condensing air flux of high-speed train air conditioner[J]. Journal of Aerodynamics,2022,(6): 155-162.
10 毛小雨,沙雨宁,陶雨霖,等. ANSYS在流体动力学分析中的应用[J]. 广东化工, 2021,48(1):30-31.
Mao Xiao-yu, Sha Yu-ning, Tao Yu-lin. Application of ANSYS in fluid dynamics analysis[J]. Guangdong Chemical Industry, 2021, 48(1):30-31.
11 龙天渝,童思陈. 流体力学[M]. 重庆:重庆大学出版社, 2018.
12 余建祖. 换热器原理与设计[M]. 北京:北京航空航天大学出版社, 2006.
13 Wang H F, Zhou Y, Zou C,et al. Aerodynamic drag reduction of an Ahmed body based on deflectors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 148: 34-44.
14 胡煜,刘烁玲,宋淑然. 基于Fluent的风送式喷雾机导流片仿真分析[J]. 现代农业装备,2021,42(5):28-35.
Hu Yu, Liu Shuo-ling, Song Shu-ran. Simulation and analysis of flow guide plate of air spray machine based on fluent[J]. Modern Agricultural Equipment, 2021, 42(5): 28-35.
15 董小杏. 基于CFD除霜风道结构分析及优化设计[J]. 机械,2018,45(12):26-28.
Dong Xiao-xing. Analysis and optimization design of defrosting duct structure based on CFD[J]. Machinery, 2018, 45 (12): 26-28.
16 敬文博,吴刚,范金永. 空调风道设计影响因素[J]. 汽车实用技术, 2016,27(7):86-88.
Jing Wen-bo, Wu Gang, Fan Jin-yong. Influencing factor of air conditioning duct design[J]. Automotive Practical Technology, 2016(7): 86-88.
17 吴雪良,陈伟健,唐清生. 全域风空调出风形态PIV试验和热舒适性研究[C]∥2021年中国家用电器技术大会论文集,中国合肥,2021:565-571.
Wu Xue-liang, Chen Wei-jian, Tang Qing-sheng. PIV test and thermal comfort study on outlet shape of full area air conditioning[C]∥ Proceedings of the 2021 China Household Appliance Technology Conference,Hefei,China, 2021: 565-571.
18 楚德见,刘云,郑涛. 基于CFD数值模拟的风道优化设计分析[C]∥2021年中国家用电器技术大会论文集,中国合肥,2021:1782-1786.
Chu De-jian, Liu Yun, Zheng Tao. Optimization design analysis of air duct based on CFD numerical simulation[C]∥ Proceedings of the 2021 China Household Appliance Technology Conference, Hefei,China,2021:1782-1786.
19 Lorenzini-Gutierrez D, Hernandez-Guerrero A, Luviano-Ortiz J L, et al. Numerical and experimental analysis of heat transfer enhancement in a grooved channel with curved flow deflectors[J]. Applied Thermal Engineering, 2015, 75:800-808.
20 Raymond J P, Va Nn Inathan M. Feedback stabilization of a 3D fluid flow by shape deformations of an obstacle[J]. ESAIM Control Optimisation and Calculus of Variations, 2021,27(1):No.65.
21 李忠范,高文森. 应用数理统计[M]. 北京:高等教育出版社, 2009.
22 吴希. 三种权重赋权法的比较分析[J]. 中国集体经济,2016,34:73-74.
Wu Xi. Comparative analysis of three weighting methods[J]. China's Collective Economy, 2016, 34: 73-74.
23 王帅. 装载机两种冷却系统热特性对比分析及优化研究[D].长春: 吉林大学机械与航空航天工程学院,2018.
Wang Shuai. Thermal characteristics comparison and optimization of two kinds of cooling systems for loaders[D]. Changchun:School of Mechanical and Aerospace Engineering, Jilin University, 2018.
[1] Yuan-yi LIU,Sheng-jie YU,Bei XU,Xian-liang WANG,Fa-cheng SONG. Experimental study on in-situ tilling plow in facility agriculture based on discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1153-1165.
[2] Yi LI,Chen-yang LYU,Ji-cai LIANG,Ce LIANG. Section deformation analysis of irregular Y-shaped aluminum profile of multi-point stretch-bending process [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 105-113.
[3] Jian-ping LI,Yong-liang BIAN,Xin YANG,Peng-fei WANG,Xin-hao LI,Chun-lin XUE. Operational parameter optimization and testing of an air-assisted multi-fan orchard sprayer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2474-2485.
[4] QIAN Zhi-hui, ZHOU Liang, REN Lei, REN Lu-quan. Completely passive walking machine with bionic subtalar joint and matatarsal phalangeal joint [J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[5] SUN Bo-hua, DENG Wei-wen, ZHU Bing, WU Jian, WANG Shan-shan. Identification of vehicle motion intention based on reaction behavior model [J]. 吉林大学学报(工学版), 2018, 48(1): 36-43.
[6] ZHANG Ze-xing, CHEN Guo-ying, ZONG Chang-fu. Objective evaluation indices of steering performance for EPS based on sensitivity analysis [J]. 吉林大学学报(工学版), 2015, 45(4): 1043-1048.
[7] QI Long, TAN Zu-ting, MA Xu, CHEN Guo-rui, XIE Jun-feng, KUANG Jian-xia. Optimization and test of operational parameters of pneumatic vibration uniform-seeds device [J]. 吉林大学学报(工学版), 2014, 44(6): 1684-1691.
[8] ZHENG Xue-lian, LI Xian-sheng, REN Yuan-yuan, YANG Meng. Rollover stability analysis of tank vehicle impacted by transient liquid sloshing [J]. 吉林大学学报(工学版), 2014, 44(3): 625-630.
[9] REN Li-Li, ZHOU Jiang, TONG Jin. Factors influencing degree of substitution of hydroxyl groups of surfacemodified starch films with alkenyl succinic anhydrides [J]. 吉林大学学报(工学版), 2010, 40(06): 1624-1628.
[10] PENG Ju-Wei, HAN Xiang-Kui, KANG Chun-LI, ZHAO Xin-Tong. Effect of influent mode on the running efficiency of anaerobic baffled reactor [J]. 吉林大学学报(工学版), 2010, 40(02): 592-0596.
[11] Wang Jing-chun,Chen Li-li,Ren Lu-quan,Gu Song-tao,Cong Qian . Experimental research on drag reduction of bionic injector needles
[J]. 吉林大学学报(工学版), 2008, 38(02): 379-0382.
[12] REN Luquan, ZHANG Chengchun, TIAN Limei. Experimental Study on Drag Reduction for Bodies of Revolution Using Bionic NonSmoothness [J]. 吉林大学学报(工学版), 2005, 35(04): 431-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!