Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (1): 105-113.doi: 10.13229/j.cnki.jdxbgxb.20220188

Previous Articles    

Section deformation analysis of irregular Y-shaped aluminum profile of multi-point stretch-bending process

Yi LI1,2(),Chen-yang LYU1,2,Ji-cai LIANG1,3,Ce LIANG1,2()   

  1. 1.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
    2.Key Laboratory of Automobile Materials,Ministry of Education,Jilin University,Changchun 130022,China
    3.Chongqing Research Institute,Jilin University,Chongqing 401123,China
  • Received:2022-03-16 Online:2024-01-30 Published:2024-03-28
  • Contact: Ce LIANG E-mail:henrylee@jlu.edu.cn;liangce@jlu.edu.cn

Abstract:

In order to improve the forming quality after multi-point stretch bending of profile, from the perspective of the section deformation, based on ABAQUS finite element simulation, after the multi-point stretch bending of irregular Y-shaped aluminum profile, firstly, the influence law of different process parameters (number of dies, bending radius, pre-stretching amount, pro-stretching amount and friction coefficient) on the section deformation distribution of the workpiece is explored by means of the control variable method. Secondly, in order to comprehensively consider the interaction between the process parameters, combined with the orthogonal test analysis, the primary and secondary relationship of the influence of various process parameters on the maximum section deformation of the workpiece is further explored. The results show that when the pro-stretching amount changes, the maximum value of section width deformation is 1.58 mm, the minimum value is 1.06 mm, the variation range is 49.1%; the maximum value of section height deformation is 1.25 mm, the minimum value is 0.77 mm, and the variation range is 62.3%, that is, the pro-stretching amount has the greatest influence on the section deformation. Finally, the optimal forming scheme of multi-point stretch bending is determined after comprehensive analysis, and the feasibility of the forming scheme is verified by simulation and experiment, which greatly improves the forming quality of the parts.

Key words: multi-point stretch-bending, section deformation, control variable method, process parameters, orthogonal test

CLC Number: 

  • TG356

Fig.1

Traditional stretch-bending forming and multi-point stretch-bending forming"

Fig.2

Shape and size of cross-section of profile"

Fig.3

Finite element model of multi-point stretch-bending"

Fig.4

Profile section deformation description and point location"

Fig.5

Effect of die number on section deformation distribution of profile"

Fig.6

Influence of bending radius on section deformation distribution of profile"

Fig.7

Effect of pre-stretching amount on section deformation distribution of profile"

Fig.8

Effect of pro-stretching amount on section deformation distribution of profile"

Fig.9

Effect of friction coefficient on section deformation distribution of profile"

Table 1

Orthogonal test results and calculations"

试验序号NRδpreδprofΔW(max)ΔH(max)
158 0000.6%0.6%0.051.275 989 90.624 852 6
2510 0000.9%0.9%0.101.335 299 10.851 390 1
3512 0001.2%1.2%0.151.380 117 91.097 135 6
4514 0001.5%1.5%0.201.744 507 11.369 503 0
5108 0000.9%1.2%0.201.536 731 31.189 722 0
61010 0000.6%1.5%0.151.428 677 31.113 647 9
71012 0001.5%0.6%0.101.211 710 20.878 601 5
81014 0001.2%0.9%0.051.079 444 00.825 863 5
9158 0001.2%1.5%0.101.754 521 01.372 535 8
101510 0001.5%1.2%0.051.418 281 41.114 237 6
111512 0000.6%0.9%0.200.994 338 70.709 772 5
121514 0000.9%0.6%0.150.896 208 90.676 958 7
132080001.5%0.9%0.151.685 531 51.204 549 3
142010 0001.2%0.6%0.201.380 278 70.926 958 7
152012 0000.9%1.5%0.051.356 251 11.077 590 6
162014 0000.6%1.2%0.101.051 137 30.827 632 7
k11.4341.5631.1881.1911.282
k21.3141.3911.2811.2741.338
k31.2661.2361.3891.3471.348
k41.3691.1931.5151.5711.414
RΔW0.1680.3700.3270.3800.132
k11.0161.1000.8210.7790.913
k21.0021.0040.9510.9000.985
k30.9680.9661.0811,0821.048
k41.0090.9251.1421.2331.049
RΔH0.0480.1750.3210.4540.136

Fig.10

Variation trend of average section shrinkage value"

Fig.11

Finite element simulation under optimal processing parameters combination of section deformation"

Fig.12

Multi-point stretch-bending machine and formed part"

Fig.13

Comparison of simulation and experimental results of section deformation of formed profile"

1 李军,周佳,王利刚,等. 中国乘用车轻量化水平发展趋势研究[J]. 汽车工程学报, 2021, 11(5): 313-319, 362.
Li Jun, Zhou Jia, Wang Li-gang, et al. Research on the development trend of lightweight level of passenger cars in China[J]. Journal of Automotive Engineering, 2021, 11(5): 313-319, 362.
2 郑雪芹. 汽车新材料的应用及发展趋势[J]. 汽车纵横, 2021(11): 73-76.
Zheng Xue-qin. Application and development trend of new automotive materials[J]. Automotive Vertical and Horizontal, 2021(11): 73-76.
3 陈文博,屈闯,丁介然,等. 简述汽车用铝合金防护方式[J]. 汽车实用技术, 2021, 46(13): 202-204.
Chen Wen-bo, Qu Chuang, Ding Jie-ran,et al. Brief description of aluminum alloy protection methods for automobile[J]. Automobile Practical Technology, 2021, 46(13): 202-204.
4 Li M Z, Cai Z Y, Sui Z, et al. Principle and applications of multi-point matched-die forming for sheet metal[J]. Journal of Engineering Manufacture, 2008, 222(5): 581-589.
5 Cai Z Y, Li M Z. Principle and theoretical analysis of continuous roll forming for three-dimensional surface parts[J]. Science China Technological Sciences, 2013, 56(2): 351-358.
6 彭赫力,于亚平,李明哲,等. 大尺寸三维曲面件多点分段成形技术[J]. 锻压技术, 2018, 43(2): 29-33.
Peng He-li, Yu Ya-ping, Li Ming-zhe, et al. Multi-point segmented forming technology for large-size 3D curved parts[J]. Forging Technology, 2018, 43(2): 29-33.
7 Li Y, Li R, Liang C, et al. Influence of the curvature of the multipoint die for flexible multipoint stretch bending on the quality of aluminum profile[J]. Mathematical Problems in Engineering, 2020(1):1-9.
8 郝涛涛. 非对称截面型材拉弯成形数值模拟研究[J]. 机械制造, 2014, 52(6): 40-42.
Hao Tao-tao. Numerical simulation of stretch bending of asymmetric section profiles[J]. Mechanical Manufacturing, 2014, 52(6): 40-42.
9 Gu Z W, Lv M M, Li X, et al. Stretch bending defects control of L-section aluminum components with variable curvatures[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5-8): 1053-1061.
10 Gu Z W, Lv M M, Li X, et al. Stretch bending of Z-section stainless steel profile[J]. Journal of Iron and Steel Research International, 2016, 23(6): 525-530.
11 Gu Z W, Lv M M, Li X, et al. Stretch bending defect control of L-section SUS301L stainless-steel components with variable contour curvatures[J]. Journal of Iron and Steel Research International, 2019, 26(12): 1376-1384.
12 Liang K F, Chen Z Z, Wang S M, et al. Finite element simulation and respond surface optimization on stretch bending of square tube aluminum profile[J]. Advanced Materials Research, 2012, 365: 28-32.
13 高嵩,梁继才,滕菲,等. 柔性三维拉弯成形零件的形状控制[J]. 华南理工大学学报:自然科学版, 2014, 42(9): 53-58.
Gao Song, Liang Ji-cai, Teng Fei,et al. Shape control of flexible 3D stretch bending parts[J]. Journal of South China University of Technology(Natural Science Edition), 2014, 42(9): 53-58.
14 Liang J C, Liao Y F, Li Y, et al. Study on the influence of bending angle of multipoint stretch-bending of profiles on section distortion of parts[J]. Mathematical Problems in Engineering, 2020(1):1-11.
15 Chen C D, Liang J C, Li Y, et al. Effect of discrete roller dies on the contour accuracy of profiles in multi-point flexible stretch-bending forming[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(7): 1959-1971.
16 李义,梁继才,滕菲,等. 型材多点拉弯成形模具型面的分段补偿迭代方法[J]. 吉林大学学报:工学版, 2016,46(6): 1961-1966.
Li Yi, Liang Ji-cai, Teng Fei,et al. Sectional compensation iterative method for die surface of profile multi-point stretch bending[J]. Journal of Jilin University(Engineering and Technology Edition), 2016,46(6): 1961-1966.
[1] Ce LIANG,Fu-lei HUANG,Ji-cai LIANG,Yi LI. Numerical simulation on deformation of protective beam with “日”-shaped section during rotary draw bending [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3397-3403.
[2] Jian-ping LI,Yong-liang BIAN,Xin YANG,Peng-fei WANG,Xin-hao LI,Chun-lin XUE. Operational parameter optimization and testing of an air-assisted multi-fan orchard sprayer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2474-2485.
[3] QIAN Zhi-hui, ZHOU Liang, REN Lei, REN Lu-quan. Completely passive walking machine with bionic subtalar joint and matatarsal phalangeal joint [J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[4] SUN Bo-hua, DENG Wei-wen, ZHU Bing, WU Jian, WANG Shan-shan. Identification of vehicle motion intention based on reaction behavior model [J]. 吉林大学学报(工学版), 2018, 48(1): 36-43.
[5] GU Zheng-wei, LYU Meng-meng, ZHANG Wen-xue, LEI Jiao-jiao, XU Hong. Stamping of front-end three-dimensional skin of China electric multiple units [J]. 吉林大学学报(工学版), 2017, 47(3): 869-875.
[6] ZHANG Ze-xing, CHEN Guo-ying, ZONG Chang-fu. Objective evaluation indices of steering performance for EPS based on sensitivity analysis [J]. 吉林大学学报(工学版), 2015, 45(4): 1043-1048.
[7] QI Long, TAN Zu-ting, MA Xu, CHEN Guo-rui, XIE Jun-feng, KUANG Jian-xia. Optimization and test of operational parameters of pneumatic vibration uniform-seeds device [J]. 吉林大学学报(工学版), 2014, 44(6): 1684-1691.
[8] REN Li-Li, ZHOU Jiang, TONG Jin. Factors influencing degree of substitution of hydroxyl groups of surfacemodified starch films with alkenyl succinic anhydrides [J]. 吉林大学学报(工学版), 2010, 40(06): 1624-1628.
[9] Wang Jing-chun,Chen Li-li,Ren Lu-quan,Gu Song-tao,Cong Qian . Experimental research on drag reduction of bionic injector needles
[J]. 吉林大学学报(工学版), 2008, 38(02): 379-0382.
[10] REN Luquan, ZHANG Chengchun, TIAN Limei. Experimental Study on Drag Reduction for Bodies of Revolution Using Bionic NonSmoothness [J]. 吉林大学学报(工学版), 2005, 35(04): 431-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!