Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3755-3762.doi: 10.13229/j.cnki.jdxbgxb.20231537

Previous Articles    

Analysis of factors associated with online learning performance of students based on HM-OLS stepwise regression model

Jun-jie LIU1(),Jia-yi Dong1,Yong YANG1,2(),Dan LIU1,Fu-heng QU1,Yan-chang LYU1   

  1. 1.College of Computer Science and Technology,Changchun University of Science and Technology,Changchun 130022,China
    2.College of Data Science and Artificial Intelligence,Jilin Engineering Normal University,Changchun 130052,China
  • Received:2023-11-15 Online:2024-12-01 Published:2025-02-24
  • Contact: Yong YANG E-mail:jjliu@cust.edu.cn;yangy@cust.edu.cn

Abstract:

To address the problem of existing regression analysis models being prone to estimation distortion or difficult to estimate accurately, an HM-OLS stepwise regression analysis model was proposed. First, the data was compressed and reduced in dimension using principal component analysis (PCA) to solve the problem of multicollinearity. Second, the processed data was used to construct a matrix, and the model parameters are estimated using least squares method, completing the model fitting, and conducting heteroscedasticity test and multicollinearity detection. Finally, the AIC value was used as a reference, and the forward stepwise regression method is used to select influencing factors, re-fitting the model, and completing the correlation analysis. The experimental results show that the HM-OLS stepwise regression analysis model proposed in this paper effectively eliminates the problems of scale differences and multicollinearity, and its stability and fitting effect are significantly better than those of traditional OLS and ridge regression analysis models. It can also accurately analyze the influencing factors with strong correlation to student academic performance in the network learning space.

Key words: HM-OLS stepwise regression model, network learning space data, student grades, correlation analysis

CLC Number: 

  • TP391.1

Fig.1

A university network learning spatial data cube"

Fig.2

Evaluation of correlation coefficient before principal component analysis"

Fig.3

Evaluation of correlation coefficient after principal component analysis"

Table 1

Data set variable description and statistics"

变量最小值

下四分

位数

中位数

上四分

位数

最大值平均值
CRR0.7320.9140.940.9690.990.926
APR0.0910.2860.5060.7180.9650.512
PCR0.3080.6440.8040.9090.9940.765
NVR0.0030.5680.7080.8130.9620.684
ITR217562 92610 8395 184 078386 021
TS125.256478.06 865195.018
BCR11124.75693.534424 323 638156 512
DPR15.258135710.703
TRD00.2530.4460.68910.474
TM00.0660.1230.38810.297
CAS00.0890.2920.55910.355
EER00.3620.3870.56310.473
EIR00.0050.3750.74310.391
EHR000.2790.80410.425

Fig.4

Results of multicollinearity test before processing"

Fig.5

Results of multicollinearity test after processing"

Fig.6

Goodness of fit comparison experiment results"

Fig.7

Adjusted goodness of fit to compare experimental results"

Fig.8

Stack bar chart of independent variable changes"

Table 2

Significance analysis of the proposed model"

coefpstd err[0.0250.975]
APR35.43990.0017.13621.07649.804
PCR52.39510.0016.15810.00164.790
CAS14.13430.0486.9700.10528.164
EER34.17810.0014.68224.75443.602
1 Black D, Bissessar C, Boolaky M. Online education as an opportunity equalizer:the changing canvas of online education[J].Interchange,2019(3):423-443.
2 Mckelvin G, Shackleton D, Clarke J,et al. 'It takes a village': a qualitative study exploring midwives' and student midwives' experience of the new standards for student supervision and assessment in practice[J]. Midirs midwifery digest, 2023,33(3):217-226.
3 羊英. 线上教学模式下学生学习行为及影响因素[J]. 上海第二工业大学学报, 2020, 37(4): 332-340.
Yang Ying. University students´ study behaviors and influence factors under the online teaching mode[J]. Journal of Shanghai Second Polytechnic University,2020,37(4):332-340.
4 杜久升,赵贝贝,侯争. 基于逐步回归的学习行为与成绩评估模型研究[J].测绘通报,2023(S2):148-151.
Du Jiu-sheng, Zhao Bei-bei, Hou Zheng. Research on learning behavior and performance evaluation model based on stepwise regression[J].Bulletin of Surveying and Mapping,2023(S2):148-151.
5 李果,张萌,康瑞. 基于logistic回归的学生成绩预测模型研究[J].中国信息技术教育,2023(15):77-80.
Li Guo, Zhang Meng, Kang Rui. Research on student achievement prediction model based on logistic regression[J].China Information Technology Education, 2023(15): 77-80.
6 储亚伟,王娟,杨舒媛,等. 基于回归分析模型的网络学习与成绩关联度研究[J].通化师范学院学报,2019, 40(6): 123-127.
Chu Ya-wei, Wang Juan, Yang Shu-yuan, et al. Study on the correlation between network learning and achievement by regression analysis model[J].Journal of Tonghua Normal University,2019,40(6):123-127.
7 张峰,陈静静. 适用于学生成绩预测的学习数据特征综述[J].软件工程,2023,26(10): 1-4.
Zhang Feng, Chen Jing-jing. Overview of learning data features applicable to student performance prediction[J]. Software Engineering,2023,26(10): 1-4.
8 Xu Z, Yuan H, Liu Q. Student performance prediction based on blended learning[J].IEEE Transactions on Education, 2020, 64(1): 66-73.
9 Marukatat S. Tutorial on PCA and approximate PCA and approximate kernel PCA[J].Artificial Intelligence Review, 2023,56(6): 5445-5477.
10 宋世军,樊敏.基于随机森林算法的大数据异常检测模型设计[J].吉林大学学报: 工学版, 2023, 53(9):2659-2665.
Song Shi-jun, Fan Min. Design of big data anomaly detection model based on random forest algorithm[J].Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2659-2665.
11 Wigati I, Mardeli M, Astuti M, et al. Perception of religious lecturers of higher order thinking skills and students' academic performance in online learning[J].International Journal of Learning, Teaching and Educational Research, 2023, 22(4): 124-140.
12 王兄. 网络学习环境下的数据分析——评价的视角[J].现代教育技术, 2010, 20(12): 106-110.
Wang Xiong. Data analysis in online learning environment-the perspective of evaluation[J].Modern Educational Technology, 2010, 20(12): 106-110.
13 骆焦煌. 基于卷积神经网络的粗粒度数据分布式算法[J].吉林大学学报: 理学版, 2020,58(4): 906-912.
Luo Jiao-huang. Distributed algorithm of coarse granularity data based on convolutional neural network[J].Journal of Jilin University (Science Edition), 2020, 58(4): 906-912.
[1] Bo XU,Chuan-xi LI. Detection method of bearing capacity of long-span concrete-filled steel tubular arch bridge based on grey theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2360-2366.
[2] CHEN Xin, HU Cui-song, NING Hou-yu, WU Yuan-qiang, WANG Shuo, YANG Chang-hai. Implicit parameterization modeling and multi-performance lightweight optimization for SVU body-in-white [J]. 吉林大学学报(工学版), 2016, 46(6): 1780-1785.
[3] JING Ming, WANG Hao, WANG Wen-jing. Heterogeneous car following models based on data analysis [J]. 吉林大学学报(工学版), 2015, 45(3): 761-768.
[4] LI Wen-ping,YANG Jing,ZHANG Jian-pei,YIN Gui-sheng. CCA-based algorithm for personalized privacy preservation in trajectory [J]. 吉林大学学报(工学版), 2015, 45(2): 630-638.
[5] YE Yu-xin, ZHAO Jian-min, MO Yu-chang, OUYANG Dan-tong, LIU Hua-wen. CCA-based mining algorithm of modules in in complex networks [J]. 吉林大学学报(工学版), 2013, 43(02): 424-428.
[6] WANG Xin-ying, LIU Gang, GU Fang-ming, XIAO Wei. Heterogeneous feature fusion method based on semantic and shape for 3D model retrieval [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 359-363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .