Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3740-3754.doi: 10.13229/j.cnki.jdxbgxb.20230122

Previous Articles     Next Articles

Design and experiment of wide folding rape windrower based on crawler type power chassis

Yun-tong LI1(),Xing-yu WAN1,Qing-xi LIAO1,2,Yin-lei LIU1,Qing-song ZHANG1,2,Yi-tao LIAO1,2()   

  1. 1.College of Engineering,Huazhong Agricultural University,Wuhan 430070,China
    2.Key Laboratory of Agricultural Equipment in Mid-lower Reaches of The Yangtze River,Ministry of Agriculture and Rural Affairs,Wuhan 430070,China
  • Received:2023-02-10 Online:2024-12-01 Published:2025-01-24
  • Contact: Yi-tao LIAO E-mail:liyuntong7188@163.com;liaoetao@mail.hzau.edu.cn

Abstract:

In response to the inefficiency in the mechanized segmented harvesting of rapeseed and the low utilization rate of dedicated chassis, and combining with the advantages of the large inventory of track-type power chassis of combine harvesters in China, a wide-foldable rapeseed windrower based on a track-type chassis was designed. Adopting a modular design approach, the structure and the working operations of the windrower were explained. The combine harvester could be adjusted to be a windrower by just switching the header, and the windrower could meet the requirements of road transportation once the header was folded. The header was divided into two bilateral symmetrical parts. During the folding, both of the parts will rotate firstly and then contract to the center of the header. Based on the dynamics and kinematics, the relationship between the folding position parameters of the header and the load of the folding hydraulic cylinder was analyzed. The rotation point of the header was determined to be 950 mm from the inner side of the frame, and the contraction stroke was 700 mm. Furthermore, the structure and working parameters of the wheel, cutter and conveying device were analyzed and determined. The load and constraint of the header frame and the hydraulic folding frame were clarified. The static analysis of the unfolding and folding status of the header and the topological optimization structure design were carried out. With the minimum stress and strain as the optimization goal, the engineering scheme of the initial model material removal rate of the header frame (85%) and the hydraulic folding frame (80%) was determined by comparative evaluation. At last, the field experiment was conducted to evaluate the functions of the windrower. The results of field experiments showed that the header could fold and work smoothly. The average laying angle of the rape was 24.4°, and the difference of laying angle was 8.52°. All the indicators could meet the field transfer requirements of the windrower. This study could provide reference for the structural design and optimization of folding header for harvesting equipment.

Key words: agricultural mechanical engineering, rape, windrower, wide folding, topology optimization, modular design

CLC Number: 

  • S223.2

Fig.1

Modular modeling of rape windrower"

Fig.2

Structure of wide folding rape windrower"

Table 1

Main parameters of rape windrower"

参 数数值
展开尺寸(长×宽×高)/(mm×mm×mm)5 450×4 300×2 520

折叠尺寸(长×宽×高)/

(mm×mm×mm)

5 450×2 500×2 520
割幅/mm4 000
整机质量/kg4 000
配套动力/kW72
作业速度/(m·s-10.8~1.1
作业效率/(亩·h-117.3~23.8
割茬高度/mm300~400
单侧铺放通道宽度/mm700
铺放通道高度/mm650

Fig.3

Folding process of windrower"

Fig.4

Process flow chart of rape windrower"

Fig.5

Folding schematic diagram of windrower"

Fig.6

Force analysis of cutting table rotating process"

Fig.7

Force analysis of horizontal state of cutting table"

Fig.8

Force analysis of vertical state of cutting table"

Fig.9

Structure of hydraulic folding device"

Fig.10

Reel working process"

Fig.11

Schematic diagram of conveyor structure"

Fig.12

Structure diagram of grain dividing device"

Fig.13

Initial model of topology optimization"

Fig.14

Mesh division"

Table 2

Main load of header frame"

主要部件质量/kg载荷/N载荷位置
割台框架--机架重心
拨禾轮47.41161.31
横割刀21.4524.32
竖割刀8.1198.53
小输送装置28.3693.44
大输送装置33.1811.05

Table 3

Main load of folding frame"

主要部件质量/kg载荷/N载荷位置
液压折叠装置框架--机架重心
左侧割台2957227.56
右侧割台2957227.57

Fig.15

Topology optimization structure and engineering transformation of header frame"

Fig.16

Statics analysis of each engineering scheme of header frame"

Table 4

Parameters of each engineering scheme of header frame"

优化条件去除率/%质量/kg最大应力/MPa最大变形/mm
展开状态90107.91105.990.85
9596.78127.273.38
9795.11195.733.81
折叠状态80115.23118.501.78
8597.39149.145.26
9090.70222.770.98

Fig.17

Comparison of engineering scheme of header frame"

Fig.18

Topology optimization structure and engineering transformation of folding frame"

Table 5

Parameters of each engineering scheme of folding frame"

去除率/%质量/kg最大应力/MPa最大变形/mm
70179.3454.550.05
80118.6066.830.14
90100.45197.301.53

Fig.19

Statics analysis of each engineering scheme of folding frame"

Fig.20

Physical object of the frame"

Fig.21

Optimized structure of cutting table"

Table 6

Basic characteristic parameters of rape"

参 数数值
植株高度/mm1 560
主茎秆直径/mm19.16
分枝数量/个8
第一分枝高度/mm548
种植密度/(株·m-225
角果层直径/mm510

Fig.22

Test of folding and unfolding of cutting table"

Fig.23

Effect diagram of rape laying"

Table 7

Laying quality parameters of rape windrower"

测量指标左侧割台右侧割台平均值
铺放角度/(°)22.626.224.4
铺放角度差/(°)7.849.208.52
铺放宽度/mm628.6606.8617.7
铺放高度/mm502.0521.2512.1
割茬高度/mm358.3367.6362.9
1 汪波, 宋丽君, 王宗凯, 等. 我国饲料油菜种植及应用技术研究进展[J]. 中国油料作物学报, 2018, 40(5): 695-701.
Wang Bo, Song Li-jun, Wang Zong-kai, et al. Production and feeding technology of fodder-rapeseed in China[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 695-701.
2 张哲, 殷艳, 刘芳, 等. 我国油菜多功能开发利用现状及发展对策[J]. 中国油料作物学报, 2018, 40(5): 618-623.
Zhang Zhe, Yin Yan, Liu Fang, et al. Current situation and development countermeasures of Chinese rapeseed multifunction development and utilization[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 618-623.
3 吴崇友, 丁为民, 石磊, 等. 油菜分段收获捡拾脱粒机捡拾损失响应面分析[J]. 农业机械学报, 2011, 42(8): 89-93.
Wu Chong-you, Ding Wei-min, Shi Lei, et al. Response surface analysis of pickup losses in two-stage harvesting for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 89-93.
4 万星宇, 廖庆喜, 廖宜涛, 等. 油菜全产业链机械化智能化关键技术装备研究现状及发展趋势[J]. 华中农业大学学报, 2021, 40(2): 24-44.
Wan Xing-yu, Liao Qing-xi, Liao Yi-tao, et al. Situation and prospect of key technology and equipment in mechanization and intelligentization of rapeseed whole industry chain[J]. Journal of Huazhong Agricultural University, 2021, 40(2): 24-44.
5 刘德军, 赵秀荣, 高连兴, 等. 不同收获方式含水率对油菜收获物流损失的影响[J]. 农业工程学报, 2011, 27(10): 339-342.
Liu De-jun, Zhao Xiu-rong, Gao Lian-xing, et al. Effect of moisture content on rape harvest logistics losses under different harvest methods[J]. Transactions of the CSAE, 2011, 27(10): 339-342.
6 关卓怀, 江涛, 李海同, 等. 倾斜输送式油菜割晒机铺放质量分析与试验[J]. 农业工程学报, 2021, 37(4): 59-68.
Guan Zhuo-huai, Jiang Tao, Li Hai-tong, et al. Analysis and test of the laying quality of inclined transportation rape windrower[J]. Transactions of the CSAE, 2021, 37(4): 59-68.
7 万星宇, 舒彩霞, 廖庆喜, 等. 高地隙履带自走式中间条铺油菜割晒机设计与试验[J]. 农业机械学报, 2022, 53(9): 109-121.
Wan Xing-yu, Shu Cai-xia, Liao Qing-xi, et al. Design and experiment of self-propelled middle-placement rape windrower[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 109-121.
8 陈延鑫. 玉米收获机折叠式割台的试验与研究[D]. 淄博:山东理工大学农业工程与食品科学学院, 2012.
Chen Yan-xin. Experiment and research on the foldable header of corn harvester[D]. Zibo: College of Agricultural Engineering and Food Science, Shandong University of Technology, 2012.
9 陈延鑫, 张道林, 许振冻, 等. 折叠式玉米收获机割台的试验[J]. 农机化研究, 2013, 35(2): 117-120.
Chen Yan-xin, Zhang Dao-lin, Xu Zhen-dong, et al. Experiment of the foldable header of corn harvester[J]. Journal of Agricultural Mechanization Research, 2013, 35(2): 117-120.
10 廖中源, 王英俊, 王书亭. 基于拓扑优化的变密度点阵结构体优化设计方法[J]. 机械工程学报, 2019, 55(8): 65-72.
Liao Zhong-yuan, Wang Ying-jun, Wang Shu-ting. Graded-density lattice structure optimization design based on topology optimization[J]. Journal of Mechanical Engineering, 2019, 55(8): 65-72.
11 张明, 刘文斌, 李闯, 等. 优化驱动的起落架结构设计方法[J]. 航空学报, 2015, 36(3): 857-864.
Zhang Ming, Liu Wen-bin, Li Chuang, et al. Optimization-driven design method of landing gear structure[J]. Acta Aeronautica Et Astronautica Sinica, 2015, 36(3): 857-864.
12 李天箭, 丁晓红, 李郝林. 机床结构轻量化设计研究进展[J]. 机械工程学报, 2020, 56 (21): 186-198.
Li Tian-jian, Ding Xiao-hong, Li Hao-lin. Research progress on lightweight design of machine tool structure[J]. Journal of Mechanical Engineering, 2020, 56 (21): 186-198.
13 才胜, 罗颖辉, 李青林. 农业机械轻量化技术研究现状与发展趋势[J]. 机械工程学报, 2021, 57(17): 35-52.
Cai Sheng, Luo Ying-hui, Li Qing-lin. State of the art of lightweight technology in agricultural machinery and its development trend[J]. Journal of Mechanical Engineering, 2021, 57(17): 35-52.
14 吴伟斌, 廖劲威, 洪添胜, 等. 山地果园轮式运输机车架结构分析与优化[J]. 农业工程学报, 2016, 32(11): 39-47.
Wu Wei-bin, Liao Jing-wei, Hong Tian-sheng, et al. Analysis and optimization of frame structure for wheeled transporter in hill orchard[J]. Transactions of the CSAE, 2016, 32(11): 39-47.
15 谢斌, 温昌凯, 杨子涵, 等. 基于实测载荷的蔬菜田间动力机械车架结构优化[J]. 农业机械学报, 2018, 49(): 463-469.
Xie Bin, Wen Chang-kai, Yang Zi-han, et al. Structure optimization of frame for field vegetable power machinery based on measured load data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(Sup.): 463-469.
16 中华人民共和国交通部. 超限运输车辆行驶公路管理规定[J]. 中华人民共和国国务院公报, 2000(23): 33-36.
17 李平, 廖庆喜, 李磊, 等. 4SY-1.8改进型油菜割晒机主要装置设计与试验[J]. 农业机械学报, 2014, 45(1): 53-58.
Li Ping, Liao Qing-xi, Li Lei, et al. Design and experiment of the main device of 4SY-1.8 modified rape windrower[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 53-58.
18 王伟, 吕晓兰, 王士林, 等. 茎叶类蔬菜机械化收获技术研究现状与发展[J]. 中国农业大学学报, 2021, 26(4): 117-127.
Wang Wei, Xiao-lan Lyu, Wang Shi-lin, et al. Current status and development of stem and leaf vegetable mechanized harvesting technology[J]. Journal of China Agricultural University, 2021, 26(4): 117-127.
19 李海同, 吴崇友, 沐森林, 等. 基于ANSYS-ADAMS的立式油菜割晒机铺放角形成机理[J]. 农业工程学报, 2020, 36(14): 96-105.
Li Hai-tong, Wu Chong-you, Mu Sen-lin, et al. Formation mechanism of laying angle of vertical rape windrower based on ANSYS-ADAMS[J]. Transactions of the CSAE, 2020, 36(14): 96-105.
20 廖宜涛, 廖庆喜, 周宇, 等. 饲料油菜薹期收获茎秆破碎离散元仿真参数标定[J]. 农业机械学报, 2020, 51(6): 73-82.
Liao Yi-tao, Liao Qing-xi, Zhou Yu, et al. Parameters calibration of discrete element model of fodder rape crop harvest in bolting stage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 73-82.
21 李仲恺, 谢方平, 刘科, 等. 油菜收获圆盘式切割器的设计与性能试验[J]. 湖南农业大学学报:自然科学版, 2014, 40(1): 83-88.
Li Zhong-kai, Xie Fang-ping, Liu Ke, et al. Design and performance evaluation of a disc cutter for rape harvest[J]. Journal of Hunan Agricultural University(Natural Sciences), 2014, 40(1): 83-88.
22 廖宜涛, 陈传节, 舒彩霞, 等. 4SY-1.8型手扶式油菜割晒机设计与试验[J]. 农业机械学报, 2014, 45(): 94-100.
Liao Yi-tao, Chen Chuan-jie, Shu Cai-xia, et al. Design and experiment of 4SY-1.8 rape walking windrower[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(Sup.1): 94-100.
23 李平, 廖庆喜, 舒彩霞, 等. 油菜割晒机茎秆铺放质量的故障成因分析与参数匹配研究[J]. 应用基础与工程科学学报, 2016, 24(1): 197-209.
Li Ping, Liao Qing-xi, Shu Cai-xia, et al. Fault analysis of stem windrowing quality and parameters match on the rape windrower[J]. Journal of Basic Science and Engineering, 2016, 24(1): 197-209.
24 金文明, 李华军, 寇淑清, 等. 装配式凸轮轴悬臂式数控装配机的机架模态分析[J]. 吉林大学学报:工学版, 2009, 39(): 319-323.
Jin Wen-ming, Li Hua-jun, Kou Shu-qing, et al. Modal analysis of frame of cantilever NC assembling machine for assembled camshaft[J]. Journal of Jilin University (Engineering and Technology Edition) 2009, 39(Sup.2): 319-323.
25 汪泉, 陈进, 王君, 等. 气动载荷作用下复合材料风力机叶片结构优化设计[J]. 机械工程学报, 2014, 50(9): 114-121.
Wang Quan, Chen Jin, Wang Jun, et al. Structural optimization of composite wind turbine blade under aerodynamic loads[J]. Journal of Mechanical Engineering, 2014, 50(9): 114-121.
26 张娜娜, 赵匀, 刘宏新. 高速水稻插秧机车架的轻量化设计[J]. 农业工程学报, 2012, 28(3): 55-59.
Zhang Na-na, Zhao Yun, Liu Hong-xin. Light design of frame for self-propelled chassis rice transplanter[J]. Transactions of the CSAE, 2012, 28(3): 55-59.
27 邱白晶, 何耀杰, 盛云辉, 等. 喷雾机喷杆有限元模态分析与结构优化[J]. 农业机械学报, 2014, 45(8): 112-116.
Qiu Bai-jing, He Yao-jie, Sheng Yun-hui, et al. Finite element modal analysis and structure optimization of spray boom[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 112-116.
28 廖庆喜, 何坤, 万星宇, 等. 履带联合收获机式动力平台油菜直播机设计与试验[J]. 农业机械学报, 2021, 52(12): 54-64.
Liao Qing-xi, He Kun, Wan Xing-yu, et al. Devices for rapeseed direct seeder on tracked combined harvesting power platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 54-64.
29 王利鹤, 赵永来, 崔红梅, 等. 基于ANSYS Workbench的深松机机架静力学分析及轻量化设计[J]. 重庆理工大学学报:自然科学, 2019,33(2): 87-93.
Wang Li-he, Zhao Yong-lai, Cui Hong-mei, et al. Static analysis and lightweight design of subsoiler frame based on ANSYS Workbench[J]. Journal of Chongqing University of Technology(Natural Science), 2019, 33(2): 87-93.
30 李耀明, 孙朋朋, 庞靖, 等. 联合收获机底盘机架有限元模态分析与试验[J]. 农业工程学报, 2013, 29(3): 38-46.
Li Yao-ming, Sun Peng-peng, Pang Jing, et al. Finite element mode analysis and experiment of combine harvester chassis[J]. Transactions of the CSAE, 2013, 29(3): 38-46.
31 金诚谦, 尹文庆, 吴崇友. 4SY-2型油菜割晒机铺放质量数学模型与影响因素分析[J]. 农业工程学报, 2012, 28(2): 45-48.
Jin Cheng-qian, Yin Wen-qing, Wu Chong-you. Mathematical model and influencing factors analysis for windrow quality of 4SY-2 rape windrower[J]. Transactions of the CSAE, 2012, 28(2): 45-48.
32 金诚谦, 尹文庆, 吴崇友. 油菜割晒机拨指输送链式输送装置研制与试验[J]. 农业工程学报, 2013, 29(21): 11-18.
Jin Cheng-qian, Yin Wen-qing, Wu Chong-you. Development and experiment of rape windrower transportation device with poke finger conveyor chain[J]. Transactions of the CSAE, 2013, 29(21): 11-18.
[1] Chen WANG,Te LUO,Qian-qian HUI,Zhong-hao WANG,Fang-fang WANG. Design and verification of electromechanical system for docking and locking of modular flying vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2130-2140.
[2] Cai-xia SHU,Jia YANG,Qing-xi LIAO,Xing-yu WAN,Jia-cheng YUAN. Design and experiment of diversion type double-cylinder cyclone separation system for rapeseed combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1807-1820.
[3] Jian-xing YU,Ming-xiu WEI,Yang YU,Yu-peng CUI,Yu PAN. Reliability-based topology optimization and engineering design of stiffened plates [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2781-2791.
[4] Huan-lin ZHOU,Xin GUO,Xuan WANG,Li-xue FANG,Kai LONG. Topology optimization design of multiphase porous structures considering geometric nonlinearity [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2754-2763.
[5] Shuai MA,Li-ming XU,Shu-cai XU,Cong NIU,Cheng-gong YAN,Hao-chao TAN. Design and experiment of grapevine cold⁃proof soil cleaner with combined scraping and brushing [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 294-312.
[6] Lin-rong SHI,Wu-yun ZHAO. Design and test of rolling spoon type flaxes precision hole sower for caraway in northwest cold and arid agricultural region [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2706-2717.
[7] Chao-jian FANG,Xin-rong HU. Privacy-sensitive data filtering algorithm based on fuzzy approximation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1174-1180.
[8] Shu-yang SUN,Wei-bin CHENG,Hao-zhen ZHANG,Xiang-ping DENG,Hong QI. Deep-learning-based two-stage approach for real-time explicit topology optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2942-2951.
[9] Guo-liang WEI,Qing-song ZHANG,Biao WANG,Kun HE,Qing-xi LIAO. Analysis and experiment on parameters of plough body of rapeseed direct seeder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1709-1718.
[10] Xing-yu WAN,Qing-xi LIAO,Ya-jun JIANG,Yi-yin SHAN,Yu ZHOU,Yi-tao LIAO. Discrete element simulation and experiment of mechanized harve- sting and chopping process for fodder rape crop harvest [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2735-2745.
[11] Jia-cheng YUAN,Chang WANG,Kun HE,Xing-yu WAN,Qing-xi LIAO. Effect of components mass ratio under sieve on cleaning system performance for rape combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1897-1907.
[12] Gang WANG,Hui-li LIU,Hong-lei JIA,Chun-jiang GUO,Yong-jian CONG,Ming-hao QU. Design and experiment of touching-positioning weeding device for inter-row maize (Zea Mays L.) [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1518-1527.
[13] WANG Deng-feng, ZHANG Shuai, WANG Yong, CHEN Hui. Optimization design of assembled wheel based on performance of fatigue and 13° impact [J]. 吉林大学学报(工学版), 2018, 48(1): 44-56.
[14] SHI Wen-ku, ZU Qing-hua, CHEN Zhi-yong, MAO Yang, HE Bang-ying, FU Ji-yun, LI Xiao-yan. Noise diagnosis of in idle automotive air conditioning compressor and topology optimization [J]. 吉林大学学报(工学版), 2016, 46(3): 725-731.
[15] ZHU Jian-feng, LIN Yi, CHEN Xiao-kai, SHI Guo-biao. Structural topology optimization based design of automotive transmission housing structure [J]. 吉林大学学报(工学版), 2013, 43(03): 584-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .