Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (11): 3148-3157.doi: 10.13229/j.cnki.jdxbgxb.20230026

Previous Articles    

Simulation and experimental validation of spinning process for double-cone-shaped copper alloy dosage form cover in pharmaceutical applications

Yan-qing LI1(),Sheng-xu LU1,Yong-zhou LI1,Ming-zhi HUANG1,Tao HUANG2()   

  1. 1.School of Electromechanical Engineering,Changchun University of Science and Technology,Changchun 130022,China
    2.Changchun Institute of Equipment and Technology,Changchun 130012,China
  • Received:2023-01-09 Online:2024-11-01 Published:2025-04-24
  • Contact: Tao HUANG E-mail:liyanqing@cust.edu.cn;13843082365@163.com

Abstract:

This paper mainly focuses on the simulation and experiments of spinning process of copper alloy charge liner. Based on the Simufact/Ansys platform, a three-dimensional finite element model of biconical copper alloy charge liner spinning is established. The stress and strain distribution of the charge liner, during the process of power spinning, is analyzed by numerical simulation method, and the conclusion of analysis is that higher stresses lie in the front area and biconical transition arc area of the charge liner. Aiming at stress-strain distribution of charge liner after spinning, the influences of spinning wheel installation angle, radius of the spinning wheel and the spinning wheel feed ratio on the stress and strain distribution are respectively obtained. The spinning experiments are carried out with the optimized process parameters, the experimental results show that the size of the charge liner meets the accuracy requirements, which indicates that the simulation method can play a guiding role in the actual spinning processing.

Key words: biconical copper alloy charge liner, power spinning, stress and strain

CLC Number: 

  • TG306

Table 1

Copper alloy main chemical composition"

元素百分比/%元素百分比/%
Cu99.96S0.01
Ag0.005Fe0.01
Zn0.01P0.005

Fig.1

Schematic diagram of the principle of strong"

Fig.2

Schematic diagram of variable wall thickness sheet"

Fig.3

Upward spinning wheel track"

Fig.4

Two-dimensional diagram of the spinning wheel"

Fig.5

Synchronous fixture design drawings"

Fig.6

Diagram of synchronous fixture"

Table 2

Spinning parameters for different solutions"

方案

旋轮工作角

β/(°)

圆角半径R

/mm

进给比f

/(mm·r-1

145100.30
26080.30
360100.30
460150.30
560100.20
660100.45

Fig.7

Finite element model of biconical charge liner"

Fig.8

Grid division"

Fig.9

Strain cloud map(Forming state 95%)"

Fig.10

Stress cloud map(Forming state 95%)"

Fig.11

Strain cloud map(Forming state 95%)"

Fig.12

Stress cloud map(Forming state 95%)"

Fig.13

Strain cloud map(Forming state 95%)"

Fig.14

Stress cloud map(Forming state 95%)"

Fig.15

Equivalent force distribution"

Fig.16

Equivalent plastic strain distribution"

Fig.17

Qualified spin test specimen"

Fig.18

Unqualified spin test specimen"

Table 3

Qualified work-piece wall thickness dimension measurement results"

等分点壁厚/mm

第1条

母线

第2条

母线

第3条

母线

第4条

母线

12.842.852.832.84
22.862.872.852.87
32.802.832.842.86
42.832.822.802.83
52.752.732.742.75
62.732.772.752.71
72.642.662.652.68
82.662.662.662.62
92.682.672.632.65
102.612.602.632.64
前端壁厚差0.060.050.050.04
后端壁厚差0.070.070.030.06
1 徐恒秋,樊桂森,张锐,等. 旋压设备及工艺技术的应用与发展[J]. 新技术新工艺, 2007, 230(2): 1, 6-8.
Xu Heng-qiu, Fan Gui-sen, Zhang Rui, et al. The application and development of spinning equipment and technology[J]. New Technology&New Process, 2007, 230(2): 1, 6-8.
2 Huang C C, Hung J C, Hung C H, et al. Finite element analysis on neck-spinning process of tube at elevated temperature[J]. Int J Adv Manuf Technol, 2011, 56: 1039-1048.
3 张全孝,姚懂,曹连忠,等. 钨铜EFP药型罩的制备及成形性能[J]. 稀有金属材料与工程, 2009, 38(3): 154-158.
Zhang Quan-xiao, Yao Dong, Cao Lian-zhong, et al. Preparation and formability of tungsten-copper EFP liner[J]. Rare Metal Materials and Engineering, 2009, 38(3): 154-158.
4 张晋辉,牛婷,温凯,等. 铝合金锥形件强旋壁厚与旋压力分布研究[J]. 兵器装备工程学报, 2020, 41(8): 245-249.
Zhang Jin-hui, Niu Ting, Wen Kai, et al. Research on distribution of wall thickness and spinning force on power spinning for aluminum alloy conical parts[J]. Journal of Ordnance Equipment Engineering, 2020, 41(8): 245-249.
5 夏琴香,张帅斌,吴小瑜,等. 锥形件单道次拉深旋压成形的数值模拟及试验研究[J]. 锻压技术, 2010, 35(1): 52-56.
Xia Qin-xiang, Zhang Shuai-bin, Wu Xiao-yu, et al. Numerical simulation and experimental investigation on one-path deep drawing spinning of conical part[J]. Forging&Stamping Technology, 2010, 35(1): 52-56.
6 Mori K, Ishiguro M, Isomura Y. Hot shear spinning of cast aluminium alloy parts[J]. Journal of Materials Processing Technology, 2009, 209(7): 3621-3627.
7 Li Y, Wang J, Lu G D, et al. A numerical study of the effects of roller paths on dimensional precision in die-less spinning of sheet metal[J]. Journal of Zhejiang University Science A, 2014, 15(6): 432-446.
8 李灵凤. 变壁厚锥形件强力旋压过程有限元力学模型的建立[J]. 锻压装备与制造技术, 2006(1): 64-66.
Li Ling-feng. FEM mechanics modelling of power spinning process of varying thickness conical parts[J]. China Metal Forming Equipment & Manufacturing Technology, 2006(1): 64-66.
9 徐银丽,詹梅,杨合,等. 锥形件变薄旋压回弹的三维有限元分析[J]. 材料科学与工艺, 2008, 16(2): 167-171.
Xu Yin-li, Zhan Mei, Yang He, et al. Springback law analysis of cone spinning using 3D FEM[J]. Materials Science and Technology, 2008, 16(2): 167-171.
10 吴统超,詹梅,古创国,等. 大型复杂薄壁壳体第一道次旋压成形质量分析[J]. 材料科学与工艺, 2011, 19(1): 126-131.
Wu Tong-Chao, Zhan Mei, Gu Chuang-guo, et al. Forming quality of the first pass spinning of large-sized complicated thin-walled shell[J]. Materials Science and Technology, 2011, 19(1): 126-131.
11 Childerhouse T, Long H. Processing maps for wrinkle free and quality enhanced parts by shear spinning[J]. Procedia Manufacturing, 2019, 29: 137-144.
12 陆栋,张乐,蒲世翱,等. 304不锈钢锥形件旋压成形工艺参数对损伤的影响[J]. 热加工工艺, 2015, 44(11): 162-165.
Lu Dong, Zhang Le, Pu Shi-ao, et al. Effect of process parameters on damage during spinning forming of 304 stainless steel conical parts[J]. Hot Working Technology, 2015, 44(11): 162-165.
13 陈建华,马飞,任顺奎,等. 大直径薄壁铝合金封头剪切旋压成形缺陷分析[J]. 精密成形工程, 2016, 8(2): 64-67.
Chen Jian-hua, Ma Fei, Ren Shun-kui, et al. Defect analysis of shear spinning of aluminum alloy thin-walled head with large diameter[J]. Journal of Netshape Forming Engineering, 2016, 8(2): 64-67.
[1] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!