Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (11): 3283-3288.doi: 10.13229/j.cnki.jdxbgxb.20230667

Previous Articles    

Turbine fault warning algorithm based on association rules and multivariate state estimation

Hong-bo ZOU(),Xin-yu ZHANG,Qi-long LI   

  1. College of Electrical and New Energy,China Three Gorges University,Yichang 443000,China
  • Received:2023-06-28 Online:2024-11-01 Published:2025-04-24

Abstract:

In order to accurately achieve steam turbine fault warning, a steam turbine fault warning algorithm based on association rules and multivariate state estimation is proposed. Mining different types of turbine fault features from historical data using association rules to construct original decision tables; Conduct attribute reduction on the results of association rule mining and extract the optimal set of fault feature reduction; Using the optimal attribute set combination reduction decision table to classify different types of turbine fault information. Based on historical data of steam turbine faults and real-time monitoring data, a dynamic memory matrix is constructed, and the fault state of the steam turbine is calculated using multivariate state estimation method. The fault feature vector is calculated using nonlinear Euclidean distance to estimate the deviation distance from the observed data. Use similarity function to estimate the state of the steam turbine, set fault alarm threshold, and achieve steam turbine fault warning. The test results show that the proposed algorithm can accurately classify the types of steam turbine faults, and the estimated values are basically consistent with the actual values, which can accurately achieve steam turbine fault warning.

Key words: association rules, multivariate state estimation, steam turbine fault warning

CLC Number: 

  • TK267

Table 1

Experimental environment configuration parameters"

名称配置参数
硬件环境Intel i7 八核CPU
网络环境DDR 20 GB Infiniband
操作系统Win l0
节点连接网络天河-1A
数据集样本大小35GB
编译器Ifort V10
仿真平台MATLAB 2019c
HadoopCloudera Hadop 5.0

Fig.1

Real time monitoring and warning environment for steam turbine faults"

Table 2

Steam turbine fault classification results"

故障类型序号汽轮机故障类型
01机组主汽压力故障
02机组高压缸排汽压力故障
03轴承盖振动故障
04机组轴向振动故障
05机组抗燃油总管压力故障
06机组主蒸汽压力故障
07低旁入口蒸汽压力故障
08机组冷油器出口压力故障
09机组中压缸压力故障
10机组低压缸压力故障

Fig.2

Comparison of turbine fault classification results using different algorithms"

Fig.3

Simulation results of turbine fault warning based on the algorithm"

Table 3

Comparison of turbine fault warning results for different algorithms under different fault types"

汽轮机

故障类型

均方根误差/%
本文算法文献[3]算法文献[4]算法
016.3847.2517.652
025.2216.5586.995
036.0136.4206.784
045.4476.0036.357
056.8527.1237.358
066.7747.0187.280
076.8907.3567.474
086.1136.4587.113
096.5416.7797.056
106.1016.4256.716
1 向玲, 朱浩伟, 丁显,等. 基于CAE与BiLSTM结合的风电机组齿轮箱故障预警方法研究[J]. 动力工程学报, 2022, 42(6): 514-521.
Xiang Ling, Zhu Hao-wei, Ding Xian, et al. Research on fault warning method of wind turbine gearbox based on CAE and BiLSTM[J]. Journal of Chinese Society of Power Engineering, 2022, 42(6): 514-521.
2 杨锡运, 邓子琦, 康宁. 融合集合经验模态分解与宽度学习的齿轮箱故障预警方法[J]. 计算机集成制造系统, 2022, 28(6): 1835-1843.
Yang Xi-yun, Deng Zi-qi, Kang Ning. Early warning method of gearbox fault based on EEMD and broad learning algorithm[J]. Computer Integrated Manufacturing Systems, 2022, 28(6): 1835-1843.
3 谢天, 覃子珍, 杨如意, 等. 基于常模式提取的火电机组通流故障早期预警方法研究[J]. 汽轮机技术, 2023, 65(2): 122-126.
Xie Tian, Qin Zi-zhen, Yang Ru-yi, et al. Study on early warning method for through-flow faults in thermal power units based on constant pattern extraction[J]. Turbine Technology, 2023, 65(2): 122-126.
4 刘朋印, 谢小荣, 马宁宁,等. 风电次/超同步振荡激发汽轮机组轴系扭振风险的在线评估与预警技术[J]. 中国电机工程学报, 2021, 41(): 52-58.
Liu Peng-yin, Xie Xiao-rong, Ma Ning-ning, et al. Online assessment and early warning of torsional vibration risk for turbine generators stimulated by sub-/super-synchronous oscillations associated with wind power[J]. Proceedings of the CSEE, 2021, 41(Sup.1): 52-58.
5 王宇飞, 李俊娥, 刘艳丽, 等. 容忍阶段性故障的协同网络攻击引发电网级联故障预警方法[J]. 电力系统自动化, 2021, 45(3): 24-32.
Wang Yu-fei, Li Jun-e, Liu Yan-li, et al. Staged failure tolerance based early warning method for cascading failures in power grid caused by coordinated cyber attacks[J]. Automation of Electric Power Systems, 2021, 45(3): 24-32.
6 辛春花, 郭艳光, 鲁晓波. 大型数据库中利用强化学习改进treap的关联规则挖掘算法[J]. 计算机应用研究, 2021, 38(1): 88-92.
Xin Chun-hua, Guo Yan-guang, Lu Xiao-bo. Association rule mining algorithm using improving treap with interpolation algorithm in large database[J]. Application Research of Computers, 2021, 38(1): 88-92.
7 李鑫, 史天运, 常宝,等. 基于优化的MsEclat算法的铁路机车事故故障关联规则挖掘[J]. 中国铁道科学, 2021, 42(4): 155-165.
Li Xin, Shi Tian-yun, Chang Bao, et al. Association rule mining for railway locomotive accident and fault based on optimized MsEclat algorithm[J]. China Railway Science, 2021, 42(4): 155-165.
8 钟倩漪, 钱谦, 伏云发, 等. 粒子群优化算法在关联规则挖掘中的研究综述[J]. 计算机科学与探索, 2021, 15(5): 777-793.
Zhong Qian-yi, Qian Qian, Fu Yun-fa, et al. Survey of particle swarm optimization algorithm for association rule mining[J]. Computer Science and Exploration, 2021, 15(5): 777-793.
9 王培培, 孟芸. 多段支持度数据频繁模式关联规则挖掘仿真[J]. 计算机仿真, 2021, 38(5): 282-286.
Wang Pei-pei, Meng Yun. Simulation of mining frequent pattern association rules of multi-segment support data[J]. Computer Simulation, 2021, 38(5): 282-286.
10 胡杰, 唐静, 谢仕义. 基于实时动态基线的运行设备多元状态估计方法[J]. 热力发电, 2021, 50(2): 125-131.
Hu Jie, Tang Jing, Xie Shi-yi. Multivariate state estimation technique for equipment running condition using real-time dynamic baseline[J]. Thermal Power Generation, 2021, 50(2): 125-131.
[1] Kun MA,Zhe WANG,Wen-bo FAN. Accurate funding method for student assistance system based on improved Apriori algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3246-3252.
[2] LI Song-sheng, ZHAO Yan-wei, GU Xi-ren. Application of improved FUP algorithm on hardware product quality analysis system [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 251-254.
[3] CHENG Xiao-qing, YUAN Sen-miao. Synthetic Data Generation on Association Rules [J]. 吉林大学学报(工学版), 2000, (3): 47-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!