Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1225-1231.doi: 10.13229/j.cnki.jdxbgxb.20240399

Previous Articles     Next Articles

Influence of thermal factors on precision stability of wire-controlled puncture robot

Guan-bin WANG1,2(),Ye-wang SUN1,2(),Peng-kai GAO1,2,Lu-wei YANG1,2   

  1. 1.Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China
    2.University of Chinese Academy of Sciences,Beijing 101408,China
  • Received:2024-04-15 Online:2025-04-01 Published:2025-06-19
  • Contact: Ye-wang SUN E-mail:wangguanbin20@mails.ucas.ac.cn;sun_yewang@163.com

Abstract:

This article focuses on the micro invasive process of variable path wire controlled robots with micrometer precision, and studies the influence of temperature factors on puncture accuracy. By integrating thermal analysis and structural mechanics analysis, the non-uniform temperature field and structural deformation characteristics of key puncture needle components were obtained. By combining the orthogonal experimental analysis method, the influence of transient and steady-state temperature changes on the changes of puncture needle components was analyzed. The results show that the transient and steady-state temperatures from 23 ℃ to 40 ℃ have a significant impact on the precision of micrometer level puncture, and the accuracy impact indicators of the two temperature conditions are consistent: the maximum thermal deformation of the puncture needle with process parameters of 40 ℃-3.1 mm-3 mm/s is 0.012 mm, and the corresponding system impact reaches about 0.1 mm; In addition, based on the characteristics of clinical puncture technology, a 3-factor 5-level analysis of variance and regression analysis were conducted to reveal the non-uniform thermal deformation law caused by thermal factors of titanium nickel alloy puncture needles and the influence of temperature T on puncture accuracy, which is greater than the diameter D of the puncture needle and the injection speed V.

Key words: thermal effect, flexible wire-controlled puncture, precision minimally invasive, experiment analysis

CLC Number: 

  • TP242

Fig.1

Key structural characteristics of precision wire controlled variable path puncture robot"

Fig.2

Analysis and setting of thermal field and structural mechanics coupling analysis method"

Fig.3

Analysis model design for influence of temperature on precision of puncture needle structure"

Fig.4

Temperature field characteristics simulation and experimental analysis"

Fig.5

Analysis of influence of temperature on structural displacement deformation"

Table 1

Orthogonal experimental analysis data oninfluence of thermal factors on displacementchanges of puncture needles"

序号1(T)/℃2(D)/mm3(V)/(mm·s-1热位移/mm
1232.315.832 7×10??
2232.536.613 1×10??
3232.756.669 2×10??
4232.986.779 6×10??
5233.1106.829 1×10??
6302.335.268 7×10?3
7302.555.290 3×10?3
8302.785.335 4×10?3
9302.9105.423 7×10?3
10303.115.463 3×10?3
11372.359.878 7×10?3
12372.589.919 4×10?3
13372.7101.000 4×10?2
14372.911.016 9×10?2
15373.131.024 4×10?2
16392.381.119 6×10?2
17392.5101.124 2×10?2
18392.711.133 8×10?2
19392.931.154 3×10?2
20393.151.160 9×10?2
21402.3101.185 4×10?2
22402.511.190 3×10?2
23402.731.200 5×10?2
24402.951.220 3×10?2
25403.181.229 2×10?2

Table 2

Analysis of variance"

因素偏差平方和自由度方差估计FF0.1(4,4)F0.05(4,4)显著性
T10.945.415.29.019.0显著
D1.540.72.19.019.0不显著
V0.740.31.09.019.0不显著

Table 3

Results of analysis of variance"

方差来源Prob>F显著性回归方程系数
模型<0.000 1显著0.914
1 段星光, 温浩, 何睿, 等.胸腹腔经皮穿刺机器人研究进展及关键技术分析[J]. 机器人, 2021, 43(5): 567-584.
Duan Xing-guang, Wen Hao, He Rui, et al. Research progress and key technology analysis of thoracoabdominal percutaneous puncture robot[J]. Robot,2021,43(5):567-584.
2 Donder A, Baena F R. 3-D path-following control for steerable needles with fiber Bragg gratings in multi-core fibers[J]. IEEE Transactions on Biomedical Engineering, 2022, 70(3): 1072-1085.
3 张帆, 何彦霖, 周康鹏, 等. 穿刺手术柔性针路径规划技术现状和展望[J]. 电子测量与仪器学报, 2023, 37(6): 1-13.
Zhang Fan, He Yan-lin, Zhou Kang-peng, et al. The current status and prospects of flexible needle path planning technology for puncture surgery[J]. Journal of Electronic Measurement and Instrumentation, 2023,37(6):1-13.
4 Goh G S, Yue W M, Guo C M. Comparative demographics and outcomes of minimally invasive transforaminal lumbar interbody fusion in Chinese, Malays, and Indians[J]. Clinical Spine Surgery, 2021, 34(2): 66-72.
5 王乃堃, 骆敏舟, 陆丽娟. 穿刺机器人在微创外科手术中的应用进展[J]. 中国疼痛医学杂志, 2020, 26(5): 376-380.
Wang Nai-kun, Luo Min-zhou, Lu Li-juan.Progress in the application of puncture robots in minimally invasive surgery[J]. Chinese Journal of Pain Medicine, 2020,26(5):376-380.
6 Kim J E, Yoo H S, Choi D J. Comparison of minimal invasive versus biportal endoscopic transforaminal lumbar interbody fusion for single-level lumbar disease[J]. Clinical Spine Surgery, 2021, 34(2): 64-71.
7 田伟. 我国医用机器人的研究现状及展望[J]. 骨科临床与研究杂志, 2018, 3(4): 193-197.
Tian Wei. The current research status and prospects of medical robots in China[J]. Journal of Clinical and Research Orthopedics, 2018, 3(4): 193-197.
8 李霞. 机器人辅助柔性针软组织穿刺系统研究[D].湘潭: 湘潭大学自动化与电子信息学院, 2016.
Li Xia. Research on robot assisted flexible needle soft tissue puncture system[D]. Xiangtan: School of Automation and Electronic Information,Xiangtan University, 2016.
9 王田苗, 郝雨飞, 杨兴帮, 等. 软体机器人: 结构、驱动、传感与控制[J]. 机械工程学报, 2017, 53(13): 1-12.
Wang Tian-miao, Hao Yu-fei, Yang Xing-bang, et al. Soft robot: structure, drive, sensing and control [J]. Journal of Mechanical Engineering, 2017, 53(13): 1-12.
10 霍本岩, 赵新刚, 韩建达, 等. 基于可达性决策的柔性针穿刺控制方法[J]. 控制理论与应用, 2014, 31(10):1423-1424.
Huo Ben-yan, Zhao Xin-gang, Han Jian-da, et al. Flexible needle puncture control method based on accessibility decision[J]. Control Theory and Application, 2014, 31(10):1423-1424.
11 雷静桃, 王洋, 程利亚, 等. 基于复位路径包络误差和改进人工势力场法的复位机器人安全策略[J]. 机械工程学报,2020, 56(1): 9-19.
Lei Jing-tao, Wang Yang, Cheng Li-ya, et al. Safety strategy for reset robots based on reset path envelope error and improved artificial force field method[J]. Journal of Mechanical Engineering, 2020, 56(1): 9-19.
12 张少华. 微创穿刺手术系统关键技术及穿刺定位精度实验研究[D].北京:北京理工大学机械与车辆学院, 2012.
Zhang Shao-hua. Experimental study on key technologies and puncture positioning accuracy of minimally invasive puncture surgery system[D].Beijing: School of Mechanical and Vehicular Engineering,Beijing Institute of Technology, 2012.
13 孙椰望, 刘宇行. 腰椎神经微创机器人柔性进针控制技术设计[J]. 颈腰痛杂志, 2021, 42(2): 274-278.
Sun Ye-wang, Liu Yu-xing. Design of flexible needle insertion control technology for lumbar spine nerve minimally invasive robot[J]. Journal of Neck and Back Pain, 2021, 42(2):274-278.
14 殷谦, 尚建忠. 柔性波动鳍两栖机器人鳍面结构设计与运动仿真[J]. 工程热物理学报, 2021, 42(11):2954-2960.
Yin Qian, Shang Jian-zhong. Design and motion simulation of fin surface structure for flexible wave fin amphibious robot[J]. Journal of Engineering Thermophysics, 2021, 42 (11): 2954-2960.
15 嵇建成, 王玉峰, 付建军, 等.康复助行机器人倾覆稳定性分析[J]. 工业控制计算机, 2024, 37(2): 70-72.
Ji Jian-cheng, Wang Yu-feng, Fu Jian-jun, et al. Stability analysis of rehabilitation walking robot overturning[J]. Industrial Control Computer, 2024, 37 (2): 70-72.
16 刘泽华. 柔索驱动式主动柔性针穿刺机器人机构的设计及分析[D]. 哈尔滨: 哈尔滨理工大学机械动力工程学院, 2020.
Liu Ze-hua. Design and analysis of a flexible cable driven active flexible needle puncture robot mechanism[D]. Harbin:School of Mechanical and Power Engineering,Harbin University of Science and Technology, 2020.
17 董欣勃, 魏操兵, 商晋. 冷压缩机温度场仿真及其冷却参数优化分析[J]. 工程热物理学报, 2020, 41(8): 1851-1860.
Dong Xin-bo, Wei Cao-bing, Shang Jin.Simulation of temperature field and optimization analysis of cooling parameters for cold compressors[J]. Journal of Engineering Thermophysics, 2020, 41 (8): 1851-1860.
18 王文涛. RV减速器热——结构耦合分析[D]. 北京:北方工业大学机械与材料工程学院,2016.
Wang Wen-tao.Thermal structural coupling analysis of RV reducer[D].Beijing:School of Mechanical and Materials Engineering, North China University of Technology,2016.
19 董年鑫, 王希贵, 吴哲, 等. 基于热固耦合的林区原油管道机器人壳体优化分析[J]. 森林工程, 2022, 38(1): 101-107.
Dong Nian-xin, Wang Xi-gui, Wu Zhe, et al. Optimization analysis of robot shell for crude oil pipeline in forest areas based on thermal solid coupling[J]. Forest Engineering, 2022,38(1): 101-107.
20 卢博文. 摆线针轮传动系统热分析[D]. 大连: 大连交通大学机械工程学院,2021.
Lu Bo-wen. Thermal analysis of cycloid needle wheel transmission system[D].Dalian:School of Mechanical Engineering, Dalian Jiaotong University, 2021.
[1] CHEN Yan-hong, WU Wei-jing, LIU Hong-wei, SHEN Shuai, LI Ce-yuan, GENG Huan-liang. Thermal characteristics of battery for pure electric vehicles [J]. 吉林大学学报(工学版), 2014, 44(4): 925-932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .