Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1419-1425.doi: 10.13229/j.cnki.jdxbgxb.20240317

Previous Articles     Next Articles

Attitude control method for autonomous landing of quadcopter drone based on tracking-learning-detection algorithm

Bin-qiao ZHANG1,2(),Jian WU1,2   

  1. 1.Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station,China Three Gorges University,Yichang 443002,China
    2.College of Electrical Engineering & New Energy,China Three Gorges University,Yichang 443002,China
  • Received:2024-03-27 Online:2025-04-01 Published:2025-06-19

Abstract:

In complex outdoor environments, during the landing process of drones, the target may be temporarily obstructed or out of view, leading to tracking failure. To enhance the accuracy and stability of unmanned aerial vehicle attitude control, a quadcopter unmanned aerial vehicle autonomous landing attitude control method based on tracking-learning-detection(TLD) algorithm is proposed. Combining extended Coleman filtering and TLD algorithm to detect specific targets and achieve target tracking through multiple median streams. By accurately capturing target position information, combined with additional inertia term crowd search algorithm and active disturbance rejection control technology, the selection of search step size and directional inertia coefficient was modified to optimize the flight attitude of quadcopter drones, improving the stability and safety of the landing process. The experimental results show that the average center offset of the proposed method is within 1.98 pixels, and the roll angle, pitch angle, and yaw angle the deviation is all within 0.02°, meet the expectations,the operation is smooth, the performance is better, ensuring the safe landing of the quadcopter drone.

Key words: Tracking learning detection algorithm, quadcopter drone, autonomous landing, attitude control

CLC Number: 

  • TP391

Fig.1

Schematic diagram of TLD algorithm"

Table 1

Experimental parameters related toquadcopter drones"

参数名称/单位数值
四旋翼无人机的反扭矩系数/(N·m·s·rad-21.0×10-6
四旋翼无人机质量/kg0.70
四旋翼升力系数/(N·s-2·rad-21.0×10-5
飞行器在x轴的惯性/(kg·m-27.6×10-3
飞行器在y轴的惯性/(kg·m-27.6×10-3
飞行器在z轴的惯性/(kg·m-21.5×10-3
旋翼中心和机体中心之间的距离/m0.25
重力加速度/(m·s-29.8

Fig.2

Autonomous landing tracking process"

Fig.3

Test results of average center offset of proposed method on different datasets"

Fig.4

Comparison of attitude control effects for autonomous landing of quadcopter dronesusing different methods"

1 李鸿一, 王琰, 姚得银, 等. 基于事件触发机制的多四旋翼无人机鲁棒自适应滑模姿态控制[J]. 中国科学:信息科学, 2023, 53(1): 66-80.
Li Hong-yi, Wang Yan, Yao De-yin, et al. Robust adaptive sliding mode attitude control of MQUAVs based on event-triggered mechanism[J]. Scientia Sinica(Informationis), 2023,53(1): 66-80.
2 高强, 刘新鹏, 刘春平, 等. 四旋翼无人机串级自抗扰姿态控制及轨迹跟踪[J]. 电光与控制, 2023, 30(3): 90-95.
Gao qiang, Liu Xin-peng, Liu Chun-ping, et al. Cascaded active disturbance rejection attitude control and trajectory tracking of quadrotor UAV[J]. Electronics Optics & Control, 2023,30(3): 90-95.
3 谭丹丹.重载荷多旋翼植保无人机自抗扰鲁棒控制算法[J]. 江苏农业科学, 2022, 50(1): 163-169.
Tan Dan-dan. Active disturbance rejection robust control algorithm for heavy-load multi-rotor plant protection UAV[J]. Jiangsu Agricultural Sciences, 2022, 50(1): 163-169.
4 杨文奇, 卢建华, 姜旭, 等.基于改进ESO的四旋翼姿态自抗扰控制器设计[J]. 系统工程与电子技术, 2022, 44(12): 3792-3799.
Yang Wen-qi, Lu Jian-hua, Jiang Xu, et al. Design of quadrotor attitude active disturbance rejection controller based on improved ESO[J]. Systems Engineering and Electronics, 2022, 44(12): 3792-3799.
5 王博, 张贺, 高正红. 大展弦比太阳能无人机横航向姿态控制研究[J]. 西北工业大学学报, 2022, 40(6): 1223-1232.
Wang Bo, Zhang He, Gao Zheng-hong. Lateral attitude control of solar-powered UAV with high aspect ratio[J]. Journal of Northwestern Polytechnical University, 2022, 40(6): 1223-1232.
6 刘子龙, 窦鹏程. 四旋翼无人机的位置和姿态控制算法研究[J]. 小型微型计算机系统, 2022, 43(4): 754-758.
Liu Zi-long, Dou Peng-cheng. Position and attitude control algorithm study of quadrotor UAV[J]. Journal of Chinese Computer Systems, 2022, 43(4): 754-758.
7 Qi J, Gao H, Yu H, et al. Integrated attitude and landing control for quadruped robots in asteroid landing mission scenarios using reinforcement learning[J].Acta Astronautica, 2023, 204: 599-610.
8 Sadigh S M, Kashaninia A, Dehghan S M. Adaptive fault tolerant attitude control of a nano-satellite with three magnetorquers and one reaction wheel[J].Journal of Aerospace Engineering, 2022, 35(1): No.0001321.
9 徐攀, 齐文宗. 一种改进的TLD跟踪算法研究[J]. 计算机仿真, 2022, 39(4): 312-315.
Xu Pan, Qi Wen-zong. Research on an improved TLD tracking algorithm[J]. Computer Simulation, 2022, 39(4): 312-315.
10 李祖检, 占荣辉, 庄钊文. 基于形态匹配聚类的近邻扩展目标跟踪算法[J]. 信号处理, 2023, 39(2): 298-309.
Li Zu-jian, Zhan Rong-hui, Zhuang Zhao-wen. Extended target tracking algorithm based on morphological matching clustering in near spaced environment[J]. Journal of Signal Processing, 2023,39(2): 298-309.
11 赵祥丹, 王彪, 王志胜, 等. 预测-五阶容积卡尔曼滤波方法[J]. 航空学报, 2023, 44(6): 249-261.
Zhao Xiang-dan, Wang Biao, Wang Zhi-sheng, et al.Predictive fifth-degree cubature Kalman filter method[J] Acta Aeronautica et Astronautica Sinica, 2023, 44 (6): 249-261.
12 王娜, 罗亮, 彭锟, 等. 基于组稀疏卡尔曼滤波的多步轨迹预测方法[J]. 空军工程大学学报, 2023, 24(6): 70-77.
Wang Na, Luo Liang, Peng Kun, et al. A multi-step trajectory prediction method based on group sparse Kalman filtering[J]. Journal of Air Force Engineering University, 2023,24(6): 70-77.
13 胡芸, 侯明勋. 人群搜索算法拟合Kriging参数的空间数据插值[J]. 湖北大学学报:自然科学版, 2023, 45(6): 865-871.
Hu Yun, Hou Ming-xun. Spatial data interpolation of seeker optimization algorithm fitting Kriging model parameters[J]. Journal of Hubei University(Natural Science Edition), 2023,45(6): 865-871.
14 焦嵩鸣, 丁辉, 钟宇飞, 等. 一种基于SiamRPN的无人机目标跟踪及控制算法[J]. 系统仿真学报, 2023, 35(6): 1372-1380.
Jiao Song-ming, Ding Hui, Zhong Yu-fei, et al. A UAV target tracking and control algorithm based on SiamRPN[J]. Journal of System Simulation, 2023,35(6): 1372-1380.
15 张堃, 李珂, 邹杰, 等.基于深度迁移强化学习的无人机投放自主引导机动控制算法[J]. 航空科学技术, 2023, 34(11): 103-110.
Zhang Kun, Li Ke, Zou Jie, et al. Autonomous Guidance maneuvering control algorithm for UAV dropping based on deep transfer reinforcement learning[J]. Aeronautical Science & Technology, 2023,34(11): 103-110.
[1] Long-long CHEN,Tian-yu FENG,Zong-yang LYU,Yu-hu WU. Finite⁃time sliding mode attitude control for coaxial tilt⁃rotor unmanned aerial vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 883-890.
[2] Ang LI,Hong-yuan YANG,Xiao-meng LEI,Kai-wen SONG,Cheng-hui QIAN. Closed-loop control of traveling attitude of hexapod robot based on equivalent connecting link model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1696-1708.
[3] AN Jing, WU Jun-feng, WU Yi-hui. Electromagnetic compatibility design of electronic control system for attitude control flywheel [J]. 吉林大学学报(工学版), 2011, 41(4): 998-1003.
[4] CHEN Min,ZHANG Shi-jie,ZHANG Ying-chun. Combined attitude control method of small satellite using reaction wheels and magnetorquers [J]. 吉林大学学报(工学版), 2010, 40(04): 1155-1160.
[5] ZHANG Liu|JIN Guang. Large angle attitude maneuver control of spacecraft with bounded inputs [J]. 吉林大学学报(工学版), 2010, 40(04): 1166-1170.
[6] YIN Yong-xin, YANG Ming, WANG Zi-cai . Attitude control for interceptor missile by combine control based on neural networks [J]. 吉林大学学报(工学版), 2008, 38(04): 981-985.
[7] Zhang Ming-guo, Geng Yun-hai, Jia Lin-heng . Early warning satellite sliding mode control based on RBF neural networks adaptive learning [J]. 吉林大学学报(工学版), 2007, 37(04): 959-964.
[8] Li Jing,Wu Yun-ping,Yang Zhong-ang,Guo Li-shu,Wang Jun,Li You-de1,Li Chun-feng . Suspension damping control strategy for vehicle attitude control system [J]. 吉林大学学报(工学版), 2006, 36(增刊2): 24-28.
[9] Liu Zhihua,, Jia Hongguang, Bai Yue,, Wu Yihui, Zhan Dini, Yang Zuoqi,. High precision speed measurement method of flywheels in integrated energystorage and attitudecontrol system [J]. 吉林大学学报(工学版), 2006, 36(增刊1): 99-0104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .