Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1780-1787.doi: 10.13229/j.cnki.jdxbgxb.20230811

Previous Articles     Next Articles

Construction and analysis of the electromagnetic compatibility evaluation model for vehicular communication systems

Guang-shuo ZHANG1(),Shi-wei ZHANG2,Yang-zhen Qin1,Fu-lin WU1,Bo JIANG1,Hong-min LU1()   

  1. 1.School of Electronic Engineering,Xidian University,Xi'an 710071,China
    2.China North Vehicle Research Institute,Beijing 100072,China
  • Received:2023-08-03 Online:2025-05-01 Published:2025-07-18
  • Contact: Hong-min LU E-mail:zhangguangshuoemc@stu.xidian.edu.cn;hmlu@mail.xidian.edu.cn

Abstract:

Aiming at the limitations of existed electromagnetic compatibility (EMC) evaluation methods or models for wireless communication systems and the actual needs of vehicular communication systems, a five-level novel evaluation model including working environment, signal spectrum, receiver sensitivity, antenna isolation and communication performance is constructed considering the completeness and accuracy of EMC evaluation for vehicular communication systems. The performance of the constructed model is validated using the vehicular communication system of an armored vehicle as an example. The model can evaluate whether there is interference between the working environment and the signal spectrum of the vehicle-mounted radio station. The error in the reduction of the receiver sensitivity between calculation and measurement is 5.8%. The calculated isolation of the vehicle-mounted antenna is in good agreement with the measurements. The modulation mode and coding mode of the vehicle-mounted digital communication system with better performance are simulated and analyzed. When the receiver sensitivity is reduced by 6 dB, the vehicle communication distance is reduced by 50%. The simulation and measurement results show that the proposed model is suitable for the evaluation of EMC of vehicular communication systems for armored vehicles.

Key words: electromagnetic fields and microwave technology, armored vehicle, wireless communication system, electromagnetic compatibility, evaluation model

CLC Number: 

  • U463.67

Fig.1

Flowchart of the proposed model"

Fig.2

Vehicle communication propagation diagram"

Table 1

Antenna polarization mismatch loss"

接收天线水平极化垂直极化圆极化
G<10 dBG≥10 dBG<10 dBG≥10 dB

水平

极化

G<10 dB00-16-16-3
G≥10 dB00-16-20-3

垂直

极化

G<10 dB-16-1600-3
G≥10 dB-16-2000-3
圆极化-3-3-3-30

Table 2

BER of the different modulation types"

调制方式相干解调非相干解调
2ASK12erfcSNR212e-SNR4
2FSK12erfcSNR212e-SNR2
2PSK12erfc(SNR)
2DPSKerfc(SNR)12e-SNR

Table 3

Vehicle 1 radio parameters and performance indicators"

1号短波电台(HF1)2号超短波电台(VHF2)3号超短波电台(VHF3)性能指标

工作状态

工作频率/MHz

发射功率/W

带宽/MHz

驻波比

发射

15

50

3

1.5

工作状态

工作频率/MHz

发射功率/W

带宽/MHz

驻波比

发射

45

50

10

1.5

工作状态

工作频率/MHz

灵敏度/dBm

带宽/MHz

驻波比

接收

53

-116

15

1.5

通信距离/km

天线隔离度/dB

灵敏度下降/dB

15~30

20

6

天线增益/dB

天线极化方式

1

垂直极化

天线增益/dB

天线极化方式

1

水平极化

天线增益/dB

天线极化方式

1

垂直极化

Table 4

Vehicle 2 radio parameters"

4号超短波电台(VHF4)5号短波电台(HF5)

工作状态

工作频率/MHz

发射功率/W

带宽/MHz

驻波比

发射

80

50

17

1.5

工作状态

工作频率/MHz

灵敏度/dBm

带宽/MHz

驻波比

接收

11

-107

3

1.5

天线增益/dB

天线极化方式

1

垂直极化

天线增益/dB

天线极化方式

1

垂直极化

Table 5

Calculation result of the first-level evaluation"

收发对FIMTIMRIMSIM
HF1和VHF3不存在存在存在存在
VHF2和VHF3存在存在存在存在

Table 6

Calculation result of the second-level evaluation"

收发对

基波信号

干扰

谐波信号

干扰

互调信号

干扰

HF1和VHF3不存在存在
VHF2和VHF3存在不存在
HF1、VHF2和VHF3存在

Fig.3

Actual power received by the receiver VHF3"

Fig.4

Receiver VHF3 sensitivity decrease"

Fig.5

Comparison of measurement and calculation of antenna isolation"

Fig.6

Relationship between the receiver VHF3 sensitivity decrease and the communication distance decrease"

Table 7

BER threshold for each type of digital signal"

信号类型误码率限值要求
音频Pe10-3
图像Pe10-5
视频Pe10-6

Fig.7

Simulation model of the communication link"

Fig.8

Relationship between BER and SNR"

[1] Wang K B, Lu H M, Chen C C, et al. Modeling of system-level conducted EMI of the high-voltage electric drive system in electric vehicles[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(3): 741-749.
[2] Wang K B, Lu H M, Li X J, et al. High-frequency modeling of the high-voltage electric drive system for conducted EMI simulation in electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2808-2819.
[3] Qian W W, Yang Y L, Peng J H, et al. EMI modeling for vehicle body using characteristic mode analysis[C]∥2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Beijing, China, 2022: 732-734.
[4] 赵晓凡. 新能源车高压电驱动系统电磁兼容关键技术[J]. 安全与电磁兼容, 2018(5): 9-10.
Zhao Xiao-fan. Key EMC technologies for high-voltage electrical drive system of new energy vehicle[J]. Safety & EMC, 2018(5): 9-10.
[5] Konstantinos P. Research on EMI from modern electric vehicles and their recharging systems[C]∥2020 International Symposium on Electromagnetic Compatibility, Rome, Italy, 2020: 1-6.
[6] 系统电磁环境效应试验方法 [S].
[7] Alain A. EMC performances of a land army vehicle to respect integrated radios reception sensitivity: typical performances needed for "fitted for radio (ffr)" land vehicle[C]∥International Symposium on Electromagnetic Compatibility, Los Angeles, USA, 2018: 303-308.
[8] Zhao T, Liu X M, Sun P, et al. EMC vehicle-level layout design for railway vehicles in complex electromagnetic environment[C]∥11th International Conference on Information Technology in Medicine and Education, Wuyishan, China, 2021: 231-236.
[9] 赵晓凡. 基于功能安全的电磁兼容及防护技术[J]. 微波学报, 2018, 34(): 406-409.
Zhao Xiao-fan. Electromagnetic compatibility and protection technology based on functional safety[J]. Journal of Microwaves, 2018, 34(Sup.2): 406-409.
[10] Zhang P C, Sun Y T, Leung H, et al. A novel approach for qos prediction based on bayesian combinational model[J]. China Communications, 2016, 13(11): 269-280.
[11] Marc P, Marco A, Ferran S. Measurement and evaluation techniques to estimate the degradation produced by the radiated transients interference to the GSM system[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1382-1390.
[12] 张世巍,赵晓凡. 军用车辆外部射频干扰试验测试技术研究[J]. 宇航计测技术, 2016, 36(1): 7-13.
Zhang Shi-wei, Zhao Xiao-fan. Research of external rf immunity test technique for military vehicles[J]. Journal of Astronautic Metrology and Measurement, 2016, 36(1): 7-13.
[13] 赵家升, 杨显清, 杨德强. 电磁兼容原理与技术[M]. 北京: 电子工业出版社, 2012.
[14] Zhou P, Lv Y H, Chen Z H, et al. System-level EMC assessment for military vehicular communication systems based on a modified four-level assessment model[J]. China Communications, 2018, 15(8): 39-53.
[15] 李修和. 战场电磁环境建模与仿真[M]. 北京: 国防工业出版社, 2014.
[16] 路宏敏, 余志勇, 李万玉. 工程电磁兼容[M]. 西安: 西安电子科技大学出版社, 2019.
[17] 武南开, 苏东林, 何洪涛, 等. 机载超短波电台邻道干扰减敏特性建模与评估[J]. 北京航空航天大学学报, 2017, 43(3): 481-487.
Wu Nan-kai, Su Dong-lin, He Hong-tao, et al. Modeling and evaluation of adjacent channel interference desensitization characteristics of airborne ultra-short wave radio [J]. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(3): 481-487.
[18] ITU-R P. The concept of transmission loss for radio links: 341-7[Z]. Geneva: International Telecommunication Union-Radiocommunication Sector, 2019.
[19] Malmstrom J, Frid H, Jonsson B L G, et al. Approximate methods to determine the isolation between antennas on vehicles[C]∥2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Okinawa, Japan, 2016: 131-132.
[20] 张光硕. 装甲车车载天线系统电磁兼容分析[D]. 西安:西安电子科技大学电子工程学院, 2015.
Zhang Guang-shuo. Electromagnetic compatibility analysis of vehicle antenna system of armored vehicle [D]. Xi'an: School of Electronic Engineering, Xidian University, 2015.
[21] 军用无线电台车通用规范 [S].
[22] 通信设备话音质量与等级标准与评测方法 [S].
[1] Kai-yu YANG,Wei LIU,Tian-hao WANG,Xian-li YU,Yin-han GAO,Xi-lai MA. A calculation method for uncertainty of crosstalk in multi⁃conductor transmission line [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 747-753.
[2] YANG Cheng, SONG Ping, PENG Wen-jia, JIN Hao-long, PAN Zhi-qiang. Design of armored vehicle integrated test system based on hybrid bus [J]. 吉林大学学报(工学版), 2018, 48(1): 186-198.
[3] YANG Cheng, SONG Ping, PENG Wen-jia, DENG Gao-shou, LIU Xiong-jun. Design of host computer platform for armored vehicle integrated test system [J]. 吉林大学学报(工学版), 2017, 47(6): 1796-1803.
[4] SHEN Xuan-jing, FAN Zi-long, LYU Ying-da, CHEN Hai-peng. Image tampering assessment model based on statistical features [J]. 吉林大学学报(工学版), 2016, 46(4): 1232-1238.
[5] GAO Yin-han, AN Zhan-yang, WANG Ju-xian, WANG Tian-hao, LIU Chang-ying, ZHANG Jun-dong. Application of equivalent cable bundle method in time domain radiation sensitivity of automotive cable harness [J]. 吉林大学学报(工学版), 2015, 45(3): 946-952.
[6] ZHOU Feng-dao,DONG Wei,BAO Zhi-qiang,XUE Kai-chang,HU Yue,SUN Cai-tang. Three-phase EMI filter based on switching power supply [J]. 吉林大学学报(工学版), 2015, 45(1): 216-221.
[7] TIAN Li-yuan,WANG Qing-nian,WANG Peng-yu. FlexRay network development of dual-motor hybrid power-train system [J]. 吉林大学学报(工学版), 2014, 44(3): 585-591.
[8] WANG Jian-lin, YANG Yin-sheng, WANG Xue-ling. Evaluation of land use in Yellow river delta based on extension data mining [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 479-483.
[9] AN Jing, WU Jun-feng, WU Yi-hui. Electromagnetic compatibility design of electronic control system for attitude control flywheel [J]. 吉林大学学报(工学版), 2011, 41(4): 998-1003.
[10] ZHANG Cheng, LIAO Jian-Xin, WANG Chun, NI Ping. Study on realtime quantitative evaluation of service operating quality [J]. 吉林大学学报(工学版), 2010, 40(02): 586-0591.
[11] Xie Ning, Zhao Xiao-hui, Mo Xiu-ling,Sun Yu-jing . Performance analysis of UWB receiver using Pre-Rake combining [J]. 吉林大学学报(工学版), 2007, 37(05): 1192-1196.
[12] Gao Yin-han, Ma Xi-lai, Chen Ru-na. Electromagnetic compatibility prediction of automobile based on fuzzy inference [J]. 吉林大学学报(工学版), 2006, 36(03): 399-0403.
[13] LU Xiao-fang, WANG Chuan, ZHAO Shu-kuan. Evaluation model of regional competition ability of talents [J]. 吉林大学学报(工学版), 2003, (3): 82-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Tian Xiaole,Meng Qingfan,Wang Zhenzuo,Su Weibiao, Zhu Kai,Gao Haiying,Teng Lirong. Preparation of Antimicrobial Peptide Gel and Inhibition Effect on Bacteria[J]. 吉林大学学报(工学版), 2006, 36(01): 133 -0136 .
[2] Wang Yun-kai, Yu Xiu-min,Liang Jin-guang,Zhang Li,Tao Yun-fei . Control strategy of electronic controlled diesel engine during cold start process[J]. 吉林大学学报(工学版), 2008, 38(01): 27 -031 .
[3] Zhang Jun, Wang Biao,Xiao Yu-zhi . Early diagnosis for the stress concentration zone of borehole casing
pipe by metal magnetic memory and wavelet transform
[J]. 吉林大学学报(工学版), 2007, 37(02): 469 -0473 .
[4] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[5] SUN En-chang TIAN Bin, ZHANG Dong-ying, YI Ke-chu . Performance analysis of STBC-QOTDM over spatially correlated channels
[J]. 吉林大学学报(工学版), 2009, 39(02): 514 -0518 .
[6] ZHANG Li-Meng, DIAO Jian, DIAO Xiang-Fu, OU Yang-Dan-Tong, BAI Yan. [J]. 吉林大学学报(工学版), 2009, 39(04): 1052 -1056 .
[7] Lu Yan-hui, Wang Wen-ge,Zheng Lian-zhu . Relation between Miner theory and probability accumulation theory
in calculation methods of fatigue reliability
[J]. 吉林大学学报(工学版), 2007, 37(02): 382 -0385 .
[8] CHEN Chen,HUANG Jian-qiang,LV Mo,DANG Jing-min,WANG Yi-ding. High-precision narrow pulse drive power for infrared quantum cascade laser[J]. 吉林大学学报(工学版), 2011, 41(6): 1738 -1742 .
[9] MA Long, WANG Lu-ping, LI Biao, CHEN Xiao-tian. Pixel-filtrated based method for determining optical flow[J]. , 2012, 42(04): 979 -984 .
[10] LIU Yan-heng, ZHOU Peng, WANG Jian, DENG Jun-yi. Context-aware adaptive middleware in vehicular network[J]. 吉林大学学报(工学版), 2013, 43(02): 410 -416 .