Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (11): 3485-3497.doi: 10.13229/j.cnki.jdxbgxb.20240322

Previous Articles    

Structural optimization design of excavator bucket based on improved depth surrogate model

Yi-xin CHEN(),Zai-xu CHEN,Yong-sheng LIU,Shuai YANG,Hao-jie GUO,Jin-san JIA   

  1. Key Laboratory of Road Construction Technology & Equipment,Ministry of Education,Chang'an University,Xi'an 710064,China
  • Received:2024-03-28 Online:2025-11-01 Published:2026-02-03

Abstract:

In order to optimize the design of excavator bucket structure and reduce the excavation energy consumption, this paper builds a joint simulation and optimization platform based on SOLIDWORKS, ADAMS, EDEM and MATLAB, and establishes a global optimization method for a medium-sized backhoe hydraulic excavator, which takes the maximal excavation load and strength of the bucket as the constraints, and the quality of the bucket and the unit excavation energy consumption as the optimization objectives. Through combined simulation of multibody dynamics and particle dynamics, load characteristics of the excavator during operation under different working conditions were obtained. Pearson correlation coefficients show a very strong correlation between experimental and simulated loads on the key hinge points of the bucket rod and boom, confirming the feasibility of using combined simulation to replace actual excavation operations. Multilayer perceptron (MLP) is used as the surrogate model and the parameters and hyper-parameters of MLP are optimized using Adam, Hyperband algorithm. The coefficients of determination R2 of MLP for bucket mass, maximum excavation load, excavation mass and excavation energy consumption are 0.999, 0.943, 0.933, 0.984 for Case Ⅱ; the R2 of MLP are 0.999, 0.944, 0.918, 0.925 for Case Ⅳ. The optimized MLP is combined with the NSGA-Ⅱ algorithm to iteratively optimize the bucket structure. The results show that the optimized bucket achieves a mass reduction of 7.06 % and a unit excavation energy consumption reduction of 6.47 % under the premise of meeting the requirements of the maximum excavation load and strength.

Key words: machine design and theory, excavator bucket, surrogate model, optimized design, Adam algorithm

CLC Number: 

  • TU621

Fig.1

Excavator structure composition"

Fig.2

Bucket model and key dimension parameters"

Table 1

Bucket and soil granular material parameters"

材料参数密度/(kg·m-3泊松比剪切模量/Pa
铲斗7 8010.292.09×1011
Ⅱ类土1 8000.251×107

Table 2

Soil contact parameters"

接触参数恢复系数静摩擦因数动摩擦因数
Ⅱ类土-Ⅱ类土0.350.80.1
Ⅱ类土-铲斗0.50.70.3

Fig.3

Soil model"

Fig.4

Excavator test program"

Fig.5

Four stages of excavator work"

Fig.6

Measured cylinder displacement"

Fig.7

Measured cylinder pressure"

Fig.8

Bucket tooth envelope line"

Fig.9

Joint simulation platform"

Fig.10

Two-way joint calculation principle and flow chart"

Fig.11

Bucket load time history"

Fig.12

Load comparison of key hinge points of bucket rod and boom in working condition Ⅰ"

Fig.13

Load comparison of key hinge points of bucket rod and boom in working condition Ⅱ"

Table 3

Correlation coefficient of key hinge points under different working conditions"

铰点位置斗杆-铲斗

斗杆-铲斗

油缸

动臂-斗杆动臂-斗杆油缸
工况Ⅰ0.899 20.849 30.879 20.758 3
工况Ⅱ0.891 70.887 10.879 20.887 6

Table 4

Range of key parameters of bucket structure"

尺寸变量R1/mmL/mmB/mmD1/mmA/(°)R2/mmD2/mm
原始尺寸4873761 04294.731 80015
上边界5374061 14211101 95018
下边界437346942701 65012

Fig.14

Bucket loaded before optimization"

Fig.15

Bucket structure analysis before optimization"

Fig.16

MLP neural network model"

Table 5

Hyper-parameter search space"

超参数下界上界
学习率α1×10-61×10-3
网络层数k35
隐藏层神经元数量nk10100

Fig.17

Bucket surrogate model construction process"

Fig.18

Prediction effect of working condition Ⅱ surrogate model"

Fig.19

Prediction effect of working condition Ⅳ surrogate model"

Table 6

MLP evaluation index under working condition Ⅱ"

评估方法铲斗质量最大挖掘载荷挖掘质量挖掘能耗
R20.9990.9420.9330.984
RMSE1.2411 732.90521.0341 890.9
MAE2.8034 975.7840.9004 007.9
MRAE0.00270.052 90.0400.018

Table 7

MLP evaluation index under working condition Ⅳ"

评估方法铲斗质量最大挖掘载荷挖掘质量挖掘能耗
R20.9990.9440.9180.925
RMSE1.722622.02818.6412 159.9
MAE3.0101 289.629.3844 030.4
MRAE0.0030.0230.0320.028 1

Fig.20

Bucket optimization results"

Table 8

Bucket key size change"

尺寸变量R1LBD1A/(°)R2D2
变化率/%-5.617.94-3.06-22.11-63.581.04-19.80
优化前487376104294.731 80015
优化后459.70405.871 010.137.011.731 818.6512.03

Table 9

MLP prediction and simulation errors"

预测效果

铲斗

质量

最大挖

掘载荷

挖掘

质量

挖掘

能耗

单位

功耗

相对误差/%0.4780.3932.3450.6041.701
仿真值994.1885 375.18968.50177 09400182.85
MLP预测值989.4385 039.67991.21178 164.44179.74

Table 10

Performance comparison of bucket structure after optimization"

优化效果

铲斗

质量

最大挖

掘载荷

挖掘

质量

挖掘

能耗

单位

能耗

变化率/%-7.06-7.80-2.63-8.87-6.47
优化前1 069.7092 594.11993.986194 327195.50
优化后994.1885 375.18968.500177 094182.85

Fig.21

Optimized bucket loading"

Fig.22

Analysis of optimized bucket structure"

[1] 王同建, 杨书伟, 谭晓丹, 等. 基于DEM-MBD联合仿真的液压挖掘机作业性能分析[J]. 吉林大学学报: 工学版, 2022, 52(4): 811-818.
Wang Tong-jian, Yang Shu-wei, Tan Xiao-dan, et al. Performance analysis of hydraulic excavator based on DEM-MBD co-simulation[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(4): 811-818.
[2] 蔡敢为, 黄一洋, 田军伟, 等. 一种新型正铲液压挖掘机工作机构的研究[J]. 机械工程学报, 2021, 57(13): 132-143.
Cai Gan-wei, Huang Yi-yang, Tian Jun-wei, et al. Research on a new working mechanism of face-shovel hydraulic excavator[J]. Journal of Mechanical Engineering, 2021, 57(13): 132-143.
[3] Palomba I, Richiedei D, Trevisani A, et al. Estimation of the digging and payload forces in excavators by means of state observers[J]. Mechanical Systems and Signal Processing, 2019, 134: No.106356.
[4] Saldaña R A, Bustos G A, Peña L D J, et al. Structural design of an agricultural backhoe using TA, FEA, RSM and ANN[J]. Computers and Electronics in Agriculture, 2020, 172: No.105278.
[5] Yuan Y L, Lv L Y, Wang S, et al. Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer[J]. Frontiers of Mechanical Engineering, 2020, 15(3): 1-11.
[6] Sun W, Peng X, Dou J, et al. Surrogate-based weight reduction optimization of forearm of bucket-wheel stacker reclaimer[J]. Structural and Multidisciplinary Optimization, 2020, 61(3): 1287-1301.
[7] Shi Y P, Xia Y M, Zhang Y M, et al. Intelligent identification for working-cycle stages of excavator based on main pump pressure[J]. Automation in Construction, 2020, 109: No.102991.
[8] Si J K, Zhao S Z, Feng H C, et al. Multi-objective optimization of surface-mounted and interior permanent magnet synchronous motor based on Taguchi method and response surface method[J]. Chinese Journal of Electrical Engineering, 2018, 4(1): 67-73.
[9] Forrester I A, Keane J A. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2008, 45(1): 50-79.
[10] Libano F, Rech P, Tambarar L, et al. On the reliability of linear regression and pattern recognition feedforward artificial neural networks in FPGAs[J]. IEEE Transactions on Nuclear Science, 2018, 65(1): 288-295.
[11] Li F, Zurada J M, Liu Y, et al. Input layer regularization of multilayer feedforward neural networks[J]. IEEE Access, 2017, 5: 10979-10985.
[12] 单德山, 张潇, 顾晓宇, 等. 基于多层感知深度学习的大跨度斜拉桥索力调整[J]. 桥梁建设, 2021, 51(1): 14-20.
Shan De-shan, Zhang Xiao, Gu Xiao-yu, et al. Cable force adjustment for long-span cable-stayed bridge based on multilayer perceptron deep learning[J]. Bridge Construction, 2021, 51(1): 14-20.
[13] 林景亮, 黄运保, 李海艳, 等. 基于深度代理模型的叉车臂架液压系统设计优化[J]. 中国机械工程, 2022, 33(3): 290-298.
Lin Jing-liang, Huang Yun-bao, Li Hai-yan, et al. Design optimization for hydraulic systems of forklift boom based on deep surrogate model[J]. China Mechanical Engineering, 2022, 33(3): 290-298.
[14] 晏福, 徐建中, 李奉书. 混沌灰狼优化算法训练多层感知器[J].电子与信息学报, 2019, 41(4): 872-879.
Yan Fu, Xu Jian-zhong, Li Feng-shu. Training multi-layer perceptrons using chaos grey wolf optimizer[J]. Journal of Electronics & Information Technology, 2019, 41(4): 872-879.
[15] Moayedi H, Abdullahi M M, Nguyen H, et al. Comparison of dragonfly algorithm and harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils[J]. Engineering with Computers, 2019, 37(1): 1-11.
[16] Pandey C A, Tikkiwal A V. Stance detection using improved whale optimization algorithm[J]. Complex Intelligent Systems, 2021, 7(3): 1-24.
[17] Xue Y, Tong Y L, Ferrante N. An ensemble of differential evolution and Adam for training feed-forward neural networks[J]. Information Sciences, 2022, 608: 453-471.
[18] Wang L, Liu Z C. Data-driven product design evaluation method based on multi-stage artificial neural network[J]. Applied Soft Computing Journal, 2021, 103: No.107117.
[19] 南敬昌, 杜有益, 王明寰, 等. 深度学习架构神经网络对超宽带天线建模优化[J]. 激光与光电子学进展, 2022, 59(13): 362-368.
Jing-chang Nan, Du You-yi, Wang Ming-huan, et al. Deep learning architecture and neural network optimization of ultra-wideband antenna modeling[J]. Laser & Optoelectronics Progress, 2022, 59(13): 362-368.
[20] 孔翔. 大型矿用挖掘机铲斗结构优化设计[D]. 大连: 大连理工大学机械工程学院,2018.
Kong Xiang. Structure optimization design of large mining excavator bucket[D]. Dalian: School of Mechanical Engineering, Dalian University of Technology, 2018.
[21] 雷睿. 液压挖掘机铲斗挖掘效率优化设计研究[D]. 杭州: 浙江大学机械工程学院,2018.
Lei Rui. Optimal design of excavation efficiency of hydrualic excavator bucket[D]. Hangzhou: College of Mechanical Engineering, Zhejiang University, 2018.
[22] 陈一馨, 刘永生, 吕彭民. 挖掘机载荷谱试验的作业介质及作业类型[J]. 筑路机械与施工机械化, 2018, 5(12): 117-122.
Chen Yi-xin, Liu Yong-sheng, Lv Peng-min, et al. Operation medium and type of load spectrum test of excavator[J]. Road Machinery & Construction Mechanization, 2018, 5(12): 117-122.
[23] 刘坤宇, 苏宏杰, 李飞宇, 等. 基于响应曲面法的土壤离散元模型的参数标定研究[J]. 中国农机化学报, 2021, 42(9): 143-149.
Liu Kun-yu, Su Hong-jie, Li Fei-yu, et al. Research on parameter calibration of soil discrete element model based on response surface method[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 143-149.
[24] 顿国强, 陈海涛, 纪文义. 基于EDEM仿真与SolidWorks Simulation的凿式深松铲有限元分析[J]. 河南农业大学学报, 2017, 51(5): 678-682.
Guo-qiang Dun, Chen Hai-tao, Ji Wen-yi. Finite element analysis of chisel-type deep shovel based on EDEM and Solid Works Simulation[J]. Journal of Henan Agricultural University, 2017, 51(5): 678-682.
[25] Coetzee C. Review: calibration of the discrete element method[J]. Powder Technology, 2017, 310: 104-142.
[26] 张锐, 韩佃雷, 吉巧丽, 等. 离散元模拟中沙土参数标定方法研究[J]. 农业机械学报, 2017, 48(3): 49-56.
Zhang Rui, Han Dian-lei, Ji Qiao-li, et al. Calibration methods of sandy soil parameters in simulation of discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 49-56.
[27] Maasa A L, Hannun A Y, Ng A Y. Rectifier n onlinearities improve neural network acoustic models[C]∥Proceedings of the 30th International Conference on Machine Learning. Atlanta, USA: PMLR, 2013: 456-462.
[28] Li L S, Kevin J, Giulia D, et al. Hyperband: a novel bandit-based approach to hyperparameter optimization[J]. Journal of Machine Learning Research, 2018, 18(1): 6765-6816.
[1] Guo-fa LI,Ze-quan CHEN,Jia-long HE. New adaptive sampling strategy for structural reliability analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1975-1981.
[2] MAO Yu-ze, WANG Li-qin. Influence of squirrel-cage flexible support on the dynamic performance of ball bearing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1508-1514.
[3] LIU Ying, ZHANG Kai, YU Xiang-jun. Multi-objective optimization of hydrostatic bearing of hollow shaft based on surrogate model [J]. 吉林大学学报(工学版), 2017, 47(4): 1130-1137.
[4] ZHANG Yan, HUANG He, REN Lu-quan. Drag reduction experiment of bionic excvavtor bucket teeth [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 126-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!