Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (11): 3476-3484.doi: 10.13229/j.cnki.jdxbgxb.20240206

Previous Articles    

Shear performance test of corroded cold-formed thin-walled steel hybrid connection

Yun-peng CHU(),Xue-qin CHEN,Ya-xin XIAO,Hui XIA   

  1. College of Civil Engineering and Architecture,Southwest University of Science and Technology,Mianyang 621010,China
  • Received:2024-03-01 Online:2025-11-01 Published:2026-02-03

Abstract:

In order to obtain the influence of corrosion on the shear performance of pure self-tapping screw connection and self-tapping screw-pull rivet hybrid connection of cold-formed thin-walled steel, the shear test of the above connection specimens under corrosion condition was carried out. The results show that the mechanical properties of the connecting steel plate decrease linearly with the increase of weight loss rate. Under the same weight loss rate, the shear bearing capacity of the pure self-tapping screw connection specimen decreases more than that of the self-tapping screw-pulling rivet hybrid connection specimen, and the longer the corrosion time, the more obvious the phenomenon. The corrosion factor is introduced to determine the bearing capacity calculation formula of this kind of connection, which provides a corresponding reference for the safety assessment of the bearing capacity of corroded cold-formed thin-walled steel connections.

Key words: corroded cold-formed thin-walled steel connection, shear test, shear bearing capacity, degradation rule, calculation method

CLC Number: 

  • TU33

Fig.1

Connection mode and specimen corrosion site"

Table 1

Basic parameters of specimens"

组别试件编号锈蚀时间/dt/mm连接方式
12-0.8-d600.8+0.8单一连接
24-0.8-d120----
36-0.8-d180----
42-0.8-h600.8+0.8混合连接
54-0.8-h120----
66-0.8-h180----
72-1.0-d601.0+1.0单一连接
84-1.0-d120----
96-1.0-d180----
102-1.0-h601.0+1.0混合连接
114-1.0-h120----
126-1.0-h180----
132-1.2-d601.2+1.2单一连接
144-1.2-d120----
156-1.2-d180----
162-1.2-h601.2+1.2混合连接
174-1.2-h120----
186-1.2-h180----
192-1.5-d601.5+1.5单一连接
204-1.5-d120----
216-1.5-d180----
222-1.5-h601.5+1.5混合连接
234-1.5-h120----
246-1.5-h180----
252-2.0-d602.0+2.0单一连接
264-2.0-d120----
276-2.0-d180----
282-2.0-h602.0+2.0混合连接
294-2.0-h120----
306-2.0-h180----

Fig.2

Surface morphology of connection steel plate with different corrosion time"

Fig.3

Relationship between corrosion time and weight loss rate of connection steel plates"

Fig.4

Stress-strain curves of specimens in different periods"

Table 2

Material mechanical test results"

t/mm锈蚀时间/d屈服强度/MPa抗拉强度/MPa弹性模量/GPa失重率/%伸长率/%
0.80272.5360.3200.000.0030.7
60195.2277.5126.3128.2025.1
120156.3185.2104.3239.473.1
18081.4104.779.7854.511.5
1.00259.6358.2204.000.0032.8
60230.0293.7131.4021.6625.2
120164.2211.499.2735.7615.5
180152.7185.182.6343.606.3
1.20288.2353.4206.000.0029.5
60272.5329.2142.5018.9826.7
120225.6271.3130.3025.9321.1
180145.1214.189.9043.9810.1
1.50263.2355.1213.000.0030.5
60235.0301.7140.9019.9823.4
120202.9264.6125.6028.4417.9
180165.1212.494.9043.3116.5
20262.4365.8210.000.0031.2
60256.2345.7199.601.2028.7
120244.1322.8185.001.8728.0
180210.5280.2161.4013.4719.7

Fig.5

Relationship between material mechanical and weight loss rate"

Fig. 6

Schematic diagram of loading device"

Fig. 7

Single connection failure mode"

Fig. 8

Mixed connection failure mode"

Fig.9

Load-displacement curve of corroded specimen"

Table 3

Test value of shear bearing capacity"

试件编号0 d60 d120 d180 d
0.8-d4.753.902.71.20
0.8-h5.395.004.053.30
1.0-d5.034.463.832.00
1.0-h7.437.004.562.90
1.2-d7.186.604.812.40
1.2-h8.718.005.964.25
1.5-d8.938.305.734.90
1.5-h9.569.107.566.00
2.0-d12.149.358.446.70
2.0-h11.4310.209.47.90

Table 4

Calculation of shear capacity of uncorroded single connection"

t/mmPnsPtPt/Pns
0.8+0.84.444.751.07
1.0+1.06.175.030.82
1.2+1.28.007.170.90
1.5+1.511.238.920.79
2.0+2.015.3912.130.79

Table 5

Calculation results of shear capacity of uncorroded hybrid connection"

t/mmPmPhPtPt/PmPt/Ph
0.8+0.83.545.285.391.521.02
1.0+1.04.927.217.431.511.03
1.2+1.26.389.908.711.370.88
1.5+1.58.9612.589.561.070.76
2.0+2.013.2111.6611.430.870.98

Table 6

Calculation results of shear capacity of corroded CFS single connection"

t/mm锈蚀时间/d失重率/%Pc/kNPt/kNPc/Pt
0.86028.203.523.900.90
12039.472.622.700.97
18054.511.051.200.88
1.06021.664.174.460.93
12035.763.123.830.81
18043.602.362.001.18
1.26018.986.396.600.97
12025.935.554.811.15
18043.983.312.401.38
1.56019.988.728.301.05
12028.446.585.731.15
18043.314.244.900.87
2.0601.209.169.350.98
1201.878.648.441.02
18013.476.856.701.02

Table 7

Calculation results of shear capacity of corroded CFS hybrid connection"

t/mm锈蚀时间/d失重率/%Pc/kNPt/kNPc/Pt
0.86028.204.145.000.83
12039.473.514.050.87
18054.512.563.300.78
1.06021.666.167.000.88
12035.765.144.561.13
18043.604.502.901.55
1.26018.987.818.000.98
12025.936.885.961.15
18043.985.244.251.23
1.56019.989.129.101.00
12028.447.327.560.97
18043.315.826.000.97
2.0601.2010.0010.200.98
1201.879.629.401.02
18013.477.867.900.99
[1] 黄炳生, 顾彪,倪红. 冷弯薄壁型钢结构事故特点与处理[J].南京建筑工程学院学报: 自然科学版, 2001, 42(3): 76-79.
Huang Bing-sheng, Gu Biao, Ni Hong. Accident characteristics and treatment of cold-formed thin-walled steel structures[J]. Journal of Nanjing Institute of Building Engineering (Natural Science Edition), 2001, 42(3): 76-79.
[2] Xu S H, Wang H, Su L. Degradation law of mechanical properties of Q235 steel plate in neutral salt spray corrosion environment [J]. Material Mechanical Engineering, 2016, 40(5): 86-91.
[3] Wang Y, Xu S, Wang H, et al. Predicting the residual strength and deformability of corroded steel plate based on the corrosion morphology[J]. Construction and Building Materials, 2017, 152:777-793.
[4] Xu S, Zhang Z, Li R, et al. Effect of cleaned corrosion surface topography on mechanical properties of cold-formed thin-walled steel[J]. Construction and Building Materials, 2019, 222: 1-14.
[5] Nie B, Xu S, Zhang Z, et al. Experimental investigation on corroded cold-formed steel beam-columns under compression and major axis bending[J]. Journal of Constructional Steel Research, 2020, 169: 106026.
[6] Zhang Z, Xu S, Li R. Comparative investigation of the effect of corrosion on the mechanical properties of different parts of thin-walled steel[J]. Thin-Walled Structures, 2020, 146: 106450.
[7] Kong Z, Yang F, Jin Y, et al. Experimental study on bearing capacity of corroded high-strength bolt connections under shear force [J]. Construction and Building Materials, 2021, 309: 125117.
[8] Liao Y X, Wang Y B, Qi H Z,et al. Mechanical degradation and failure behavior of Al/steel electromagnetic assisted clinched joint in chloride salt environment[J]. Thin-Walled Structures, 2023, 190: 110958.
[9] 徐善华, 古仁俊, 聂彪, 等. 锈蚀冷弯薄壁型钢板材力学性能退化规律[J]. 哈尔滨工业大学学报, 2021, 53(4): 177-186.
Xu Shan-hua, Gu Ren-jun, Nie Biao, et al. Degradation law of mechanical properties of corroded cold-formed thin-walled steel sheet[J]. Journal of Harbin Institute of Technology, 2021, 53(4): 177-186.
[10] Roy K, Lau H H, Fang Z, et al. Effects of corrosion on the strength of self-drilling screw connections in cold-formed steel structures-experiments and finite element modeling[C]∥Structures,Amsterdam,Netherlands,2022: 1080-1096.
[11] . 人造气氛腐蚀试验 盐雾试验 [S].
[12] . 金属材料拉伸试验 第1部分: 室温试验方法 [S].
[13] . 冷弯薄壁型钢结构技术规范 [S].
[14] . North American specification for the design of cold-formed steel structural members [S].
[15] PREN1999-1-4. Eurocode 9: design of aluminium structures, part: 1-4: supplementary rules for cold-formed sheeting [S].
[16] 伏金蓉. 采用混合连接的冷弯薄壁型钢双肢拼合构件受力性能研究[D].绵阳:西南科技大学土木工程与建筑学院,2023.
Fu Jin-rong. Study on the mechanical properties of cold-formed thin-walled steel double-limb composite members with hybrid connection[D]. Mianyang:school of Civil Engineering and Architecture, Southwest University of Science and Technology, 2023.
[1] Hao ZHANG,Yi-yan CHEN,Jun-yu YE,Ju-can DONG,Qiu ZHAO. Experiment on bending-torsional performance of super- span box girders with corrugated steel webs [J]. Journal of Jilin University(Engineering and Technology Edition), 2026, 56(1): 209-218.
[2] Hua-nan HE,Qi-ze WU,Xiao ZHANG,Song SUN,Bing LI,Xuan-yi ZHANG. Shear resistance of UHPC⁃NC planting bar interface [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(12): 3976-3985.
[3] Huai-xin LI,Chang-gen YAN,Bin LIN,Yu-ling SHI. Strength and statistical damage model in whole process of clay-concrete combined body [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 245-255.
[4] Guo-lin YANG,Yi-fan YANG,Hao-dong XU,Gui-jun LUO,Hong-bo XIAO. Calculation method and influencing factors of surface displacement during construction of curved shield tunnel [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1997-2008.
[5] Li-hua LI,Zi-jian LI,Heng-lin XIAO,Wen-zhe CAO,Xin-long ZHOU,Shao-ping HUANG. Experiment on cyclic shear of geosynthetic reinforced construction waste soil [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1612-1623.
[6] Han-hui HUANG,Kang-ming CHEN,Qing-xiong WU. Flexural behavior of composite continuous girders with concrete-filled steel tubular truss chords [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1665-1676.
[7] Fang-cheng LIU,Jiang WANG,Meng-tao WU,Guo-bin BU,Jie HE. Stress⁃strain characteristics of geogrid reinforced rubber sand mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2542-2553.
[8] Ya-chuan KUANG,Li-bin CHEN,Chao-ju LI,Yu-hao HE. Analysis of mechanical properties of stud shear connectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 538-546.
[9] Deng-hui GAO,Yi-chuan XING,Min-xia GUO,Ai-jun ZHANG,Xian-tao WANG,Bao-hong MA. Modified hyperbola model of interface between unsaturated remolded loess and concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 156-164.
[10] Yang WANG,Zhan⁃shuai SONG,Kong⁃hui GUO,Ye ZHUANG. Measurement of inertial parameters of rotating inertia rig [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1795-1801.
[11] SUN Xu-jie,PAN Jing-long,ZHENG Wen-zhong . Anti-seismic behavior of composite GFRPconcrete small hollow block wall
[J]. 吉林大学学报(工学版), 2008, 38(05): 1054-1059.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!