Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (11): 3727-3735.doi: 10.13229/j.cnki.jdxbgxb.20240252
Ning OUYANG1,2(
),Chen-yu HUANG2,Le-ping LIN1,2(
)
CLC Number:
| [1] | Yang K, Sun H, Zou C B, et al. Cross-attention spectral-spatial network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. |
| [2] | Ahmad M, Khan A M, Mazzara M, et al. Hybrid dense network with attention mechanism for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3948-3957. |
| [3] | 欧阳宁,李祖锋,林乐平.基于多层次空-谱融合网络的高光谱图像分类[J].吉林大学学报:工学版,2022,52(10):2438-2446. |
| Ouyang Ning, Li Zu-feng, Lin Le-ping. Hyperspectral image classification based on a multi-level spatial-spectral fusion network[J]. Journal of Jilin University (Engineering and Technology Edition), 2022,52(10):2438-2446. | |
| [4] | 欧阳宁,李祖锋,林乐平.基于空谱分组卷积密集网络的高光谱图像分类[J].计算机工程与设计,2022,43(7):2031-2039. |
| Ouyang Ning, Li Zu-feng, Lin Le-ping. Hyperspectral image classification based on a spatial-spectral group convolution dense network[J]. Computer Engineering and Design, 2022,43(7):2031-2039. | |
| [5] | Hamida A B, Benoit A, Lambert P, et al. 3-D deep learning approach for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4420-4434. |
| [6] | Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. Arxiv Preprint, 2010, 11: 201011929. |
| [7] | Hong D F, Han Z, Yao J, et al. Spectralformer: rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15. |
| [8] | Sun L, Zhao G R, Zheng Y H, et al. Spectral–spatial feature tokenization Transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. |
| [9] | Uddin M P, Mamun M A, Hossain M A. Feature extraction for hyperspectral image classification[C]∥ IEEE Region 10 Humanitarian Technology Conference. Piscataway, NJ: IEEE. 2017: 379-382. |
| [10] | Zhang D S. Wavelet Transform[J]. Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval, 2019: 35-44. |
| [11] | Tang Y G, Xie X L, Yu Y H. Hyperspectral classification of two-branch joint networks based on gaussian pyramid multiscale and wavelet transform[J]. IEEE Access, 2022, 10: 56876-56887. |
| [12] | Ahmad M, Ghous U, Usama M, et al. WaveFormer: spectral-spatial wavelet Transformer for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1-5. |
| [13] | Wang D, Du B, Zhang L P, et al. Adaptive spectral-spatial multiscale contextual feature extraction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(3): 2461-2477. |
| [14] | Gao H M, Yang Y, Li C M, et al. Multiscale residual network with mixed depthwise convolution for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(4): 3396-3408. |
| [15] | Leng Q M, Yang H O, Jiang J J, et al. Adaptive multiscale segmentations for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5847-5860. |
| [16] | Ghaderizadeh S, Abbasi M D, Sharifi A, et al. Multiscale dual-branch residual spectral-spatial network with attention for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 5455-5467. |
| [17] | Wang X, Tan K, Du P J, et al. A unified multiscale learning framework for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-19. |
| [18] | Baumgardner M F, Biehl L L, Landgrebe D A. 220 band aviris hyperspectral image data set: June 12, 1992 Indian pine test site 3[J]. Purdue University Research Repository, 2015, 10(7): 991. |
| [19] | Zhong Y F, Hu X, Luo C, et al. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J]. Remote Sensing of Environment, 2020, 250: 112012. |
| [20] | Zhong Y F, Wang X Y, Xu Y, et al. Mini-UAV-borne hyperspectral remote sensing: From observation and processing to applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(4): 46-62. |
| [21] | Mei S H, Li X G, Liu X, et al. Hyperspectral image classification using attention-based bidirectional long short-term memory network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12. |
| [1] | Dan-hui LAI,Wei-feng LUO,Xu-dong YUAN,Zi-liang QIU. Key point feature extraction algorithms for multimodal gesture in complex environments [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2288-2294. |
| [2] | Ning OUYANG,Zu-feng LI,Le-ping LIN. Hyperspectral image classification based on hierarchical spatial-spectral fusion network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2438-2446. |
| [3] | Xi-yan LI,Xia-bing ZHOU,Zheng LIU. High-capacity and robust image watermarking algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 174-179. |
| [4] | Guo-hua LIU,Wen-bin ZHOU. Pulse wave signal classification algorithm based on time⁃frequency domain feature aliasing using convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1818-1825. |
| [5] | Xiong-fei LI,Lu SONG,Xiao-li ZHANG. Remote sensing image fusion based on cooperative empirical wavelet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1307-1319. |
| [6] | CHE Xiang-jiu, LIANG Sen. Improved algorithm of SPIHT based on Max-Heap tree [J]. 吉林大学学报(工学版), 2016, 46(3): 865-869. |
| [7] | XIAO Zhong-jie. Recognition of digital image based on wavelet space feature spectrum entropy [J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998. |
| [8] | ZHANG Jiu-wen, MI Jin-cai, ZHANG Tong-feng. Texture image retrieval based on DT-CWT and generalized gaussian density [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 60-63. |
| [9] | LIU Yuan-yuan, CHEN He-xin, ZHAO Yan, SUN Hong-yan. New DWT dynamic video watermarking algorithm [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 445-449. |
| [10] | BAO Lei, XU Qi-zhi. Spectrum-keeping algorithm for fusing based on PCA [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 88-91. |
| [11] | XIA Ying-jie, LI Jin-ping, CHEN Rui. Automatic synthetic registration method based on substation multi-modal images [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 47-50. |
| [12] | WANG Xin, LI Wei-lin, LIU Fu. New algorithm of CT/MRI medical image fusion based on wavelet domain [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 25-28. |
| [13] | HU Yu-ping, WANG Zhi-jian, ZHANG Ling-hua, YIN Hua. Image-adaptive watermarking algorithm based on chaos map and DWT [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 401-404. |
| [14] | FU Zhao-yang,GUO Lei,CHANG Wei-wei. Fusion algorithm of hyperspectral images based on wavelet transform and multichannel PCNN [J]. 吉林大学学报(工学版), 2011, 41(03): 838-843. |
| [15] | QIAO Yu-long, ZHAO Chun-hui, PAN Jeng-shyang,. Fast k nearest-neighbor classification algorithm based on Haar wavelet transform [J]. 吉林大学学报(工学版), 2011, 41(01): 231-0234. |
|
||