Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (11): 3727-3735.doi: 10.13229/j.cnki.jdxbgxb.20240252

Previous Articles    

Hyperspectral image classification based on hybrid spectral enhancement and multi-scale spatial aggregation

Ning OUYANG1,2(),Chen-yu HUANG2,Le-ping LIN1,2()   

  1. 1.Key Laboratory of Cognitive Radio and Information Processing of Ministry of Education,Guilin University of Electronic Technology,Guilin 541004,China
    2.School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China
  • Received:2024-03-12 Online:2025-11-01 Published:2026-02-03
  • Contact: Le-ping LIN E-mail:ouyangning@guet.edu.cn;linleping@guet.edu.cn

Abstract:

Due to the presence of the same object with different spectrum and the same spectrum with different objects in hyperspectral images, spectral information alone cannot fully reflect the features of hyperspectral images, and spatial information can be introduced to capture the features of objects more accurately. Therefore, a hyperspectral image classification method based on hybrid spectral enhancement and multi-scale spatial aggregation is proposed in this paper. In this method, a hybrid spectral enhancement module is designed, multi-scale local features of the spectrum are constructed using wavelet transform, and global features of the spectrum are generated by Transformer architecture, so as to enhance the intra-class consistency of the spectral features. At the same time, a multi-scale spatial aggregation module is designed to extract the inherent multi-scale information of spatial features and establish the interaction between different scales, so as to generate a more robust land cover representation, thereby further improve the classification performance. The experimental results show that the proposed method is superior to other advanced networks, indicating that the method can effectively obtain more abundant spectral information and spatial feature representation.

Key words: hyperspectral image classification, hybrid spectral enhancement module, wavelet transform, multi-scale spatial aggregation module

CLC Number: 

  • TP753

Fig.1

Hyperspectral image classification network structure based on hybrid spectral enhancement and multi-scale spatial aggregation"

Fig.2

Structure diagram of hybrid spectral enhancement module"

Fig.3

Diagram of Haar wavelet first-order decomposition"

Fig.4

Structure diagram of multi-scale spatial aggregation module"

Table 1

HEMA ablation experiments in the IN dataset"

基线

小波

变换

多尺度空间聚合模块OA/%AA/%Kappa×100
SpectralFormer××80.4672.4977.88
×82.4873.3680.19
×87.7283.3186.00
94.8091.9094.04

Table 2

Classification results of different methods for IN datasets"

类别ABLSTMCNN3DViTSpectralFormerSSFTTHEMA
126.1957.1468.9674.19100.00100.00
259.9280.7367.6875.8483.3396.16
348.9066.4866.7563.2574.9687.59
438.6339.0852.0446.0474.1080.76
584.8695.3980.9491.0092.4597.43
690.9498.3093.5692.9398.1098.88
718.7534.2830.7650.0048.0092.30
884.8498.9892.8297.7599.49100.00
94.5410.8613.3320.83100.0083.33
1069.8077.4463.8876.5773.2986.22
1173.0878.4982.1190.5087.3097.53
1250.0048.9442.1763.0556.3898.52
1392.0094.5983.1388.6090.9097.90
1497.6997.4698.0797.6697.1897.83
1569.8472.9371.1571.9781.8695.32
1660.0081.6364.5159.7064.5160.60
OA/%69.9077.8974.9680.4683.7794.80
AA/%60.6270.8066.9972.4983.6291.90
Kappa×10065.8474.8971.5877.8891.5494.04

Table 3

Classification results of different methods for LK datasets"

类别ABLSTMCNN3DViTSpectralFormerSSFTTHEMA
194.1599.0496.1693.3499.6199.21
275.6768.8070.9387.4681.1297.19
325.9639.5349.1391.1553.9692.15
497.6598.5198.4598.6698.7299.28
530.9956.9730.1041.3957.0848.84
691.0184.2196.7796.8698.6199.68
798.9298.6699.9299.9799.9699.95
881.0182.2284.5690.2291.1194.33
928.3768.4359.3390.5386.6885.34
OA/%84.9491.4791.0693.6995.3896.75
AA/%69.3077.3776.1585.5185.2090.67
Kappa×10080.8089.0188.4491.7993.9995.76

Fig.5

Classification effect for IN dataset"

Fig.6

Classification effect for LK dataset"

Table 4

Training time and testing time of different methods for two datasets"

数据集ABLS-TMCNN-3DViTSpectralFormerSSFTTHEMA
IN训练58.7624.6145.9986.2522.1662.23
测试1.940.541.693.940.582.28
LK训练58.6313.2543.4473.7720.3349.47
测试59.4916.1956.50123.4718.9664.92
[1] Yang K, Sun H, Zou C B, et al. Cross-attention spectral-spatial network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[2] Ahmad M, Khan A M, Mazzara M, et al. Hybrid dense network with attention mechanism for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3948-3957.
[3] 欧阳宁,李祖锋,林乐平.基于多层次空-谱融合网络的高光谱图像分类[J].吉林大学学报:工学版,2022,52(10):2438-2446.
Ouyang Ning, Li Zu-feng, Lin Le-ping. Hyperspectral image classification based on a multi-level spatial-spectral fusion network[J]. Journal of Jilin University (Engineering and Technology Edition), 2022,52(10):2438-2446.
[4] 欧阳宁,李祖锋,林乐平.基于空谱分组卷积密集网络的高光谱图像分类[J].计算机工程与设计,2022,43(7):2031-2039.
Ouyang Ning, Li Zu-feng, Lin Le-ping. Hyperspectral image classification based on a spatial-spectral group convolution dense network[J]. Computer Engineering and Design, 2022,43(7):2031-2039.
[5] Hamida A B, Benoit A, Lambert P, et al. 3-D deep learning approach for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4420-4434.
[6] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. Arxiv Preprint, 2010, 11: 201011929.
[7] Hong D F, Han Z, Yao J, et al. Spectralformer: rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15.
[8] Sun L, Zhao G R, Zheng Y H, et al. Spectral–spatial feature tokenization Transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[9] Uddin M P, Mamun M A, Hossain M A. Feature extraction for hyperspectral image classification[C]∥ IEEE Region 10 Humanitarian Technology Conference. Piscataway, NJ: IEEE. 2017: 379-382.
[10] Zhang D S. Wavelet Transform[J]. Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval, 2019: 35-44.
[11] Tang Y G, Xie X L, Yu Y H. Hyperspectral classification of two-branch joint networks based on gaussian pyramid multiscale and wavelet transform[J]. IEEE Access, 2022, 10: 56876-56887.
[12] Ahmad M, Ghous U, Usama M, et al. WaveFormer: spectral-spatial wavelet Transformer for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1-5.
[13] Wang D, Du B, Zhang L P, et al. Adaptive spectral-spatial multiscale contextual feature extraction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(3): 2461-2477.
[14] Gao H M, Yang Y, Li C M, et al. Multiscale residual network with mixed depthwise convolution for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(4): 3396-3408.
[15] Leng Q M, Yang H O, Jiang J J, et al. Adaptive multiscale segmentations for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5847-5860.
[16] Ghaderizadeh S, Abbasi M D, Sharifi A, et al. Multiscale dual-branch residual spectral-spatial network with attention for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 5455-5467.
[17] Wang X, Tan K, Du P J, et al. A unified multiscale learning framework for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-19.
[18] Baumgardner M F, Biehl L L, Landgrebe D A. 220 band aviris hyperspectral image data set: June 12, 1992 Indian pine test site 3[J]. Purdue University Research Repository, 2015, 10(7): 991.
[19] Zhong Y F, Hu X, Luo C, et al. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J]. Remote Sensing of Environment, 2020, 250: 112012.
[20] Zhong Y F, Wang X Y, Xu Y, et al. Mini-UAV-borne hyperspectral remote sensing: From observation and processing to applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(4): 46-62.
[21] Mei S H, Li X G, Liu X, et al. Hyperspectral image classification using attention-based bidirectional long short-term memory network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.
[1] Dan-hui LAI,Wei-feng LUO,Xu-dong YUAN,Zi-liang QIU. Key point feature extraction algorithms for multimodal gesture in complex environments [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2288-2294.
[2] Ning OUYANG,Zu-feng LI,Le-ping LIN. Hyperspectral image classification based on hierarchical spatial-spectral fusion network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2438-2446.
[3] Xi-yan LI,Xia-bing ZHOU,Zheng LIU. High-capacity and robust image watermarking algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 174-179.
[4] Guo-hua LIU,Wen-bin ZHOU. Pulse wave signal classification algorithm based on time⁃frequency domain feature aliasing using convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1818-1825.
[5] Xiong-fei LI,Lu SONG,Xiao-li ZHANG. Remote sensing image fusion based on cooperative empirical wavelet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1307-1319.
[6] CHE Xiang-jiu, LIANG Sen. Improved algorithm of SPIHT based on Max-Heap tree [J]. 吉林大学学报(工学版), 2016, 46(3): 865-869.
[7] XIAO Zhong-jie. Recognition of digital image based on wavelet space feature spectrum entropy [J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998.
[8] ZHANG Jiu-wen, MI Jin-cai, ZHANG Tong-feng. Texture image retrieval based on DT-CWT and generalized gaussian density [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 60-63.
[9] LIU Yuan-yuan, CHEN He-xin, ZHAO Yan, SUN Hong-yan. New DWT dynamic video watermarking algorithm [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 445-449.
[10] BAO Lei, XU Qi-zhi. Spectrum-keeping algorithm for fusing based on PCA [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 88-91.
[11] XIA Ying-jie, LI Jin-ping, CHEN Rui. Automatic synthetic registration method based on substation multi-modal images [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 47-50.
[12] WANG Xin, LI Wei-lin, LIU Fu. New algorithm of CT/MRI medical image fusion based on wavelet domain [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 25-28.
[13] HU Yu-ping, WANG Zhi-jian, ZHANG Ling-hua, YIN Hua. Image-adaptive watermarking algorithm based on chaos map and DWT [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 401-404.
[14] FU Zhao-yang,GUO Lei,CHANG Wei-wei. Fusion algorithm of hyperspectral images based on wavelet transform and multichannel PCNN [J]. 吉林大学学报(工学版), 2011, 41(03): 838-843.
[15] QIAO Yu-long, ZHAO Chun-hui, PAN Jeng-shyang,. Fast k nearest-neighbor classification algorithm based on Haar wavelet transform [J]. 吉林大学学报(工学版), 2011, 41(01): 231-0234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!