Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1307-1319.doi: 10.13229/j.cnki.jdxbgxb20180371

Previous Articles    

Remote sensing image fusion based on cooperative empirical wavelet transform

Xiong-fei LI1,2(),Lu SONG2,Xiao-li ZHANG1()   

  1. 1. College of Computer Science and Technology,Jilin University, Changchun 130012, China
    2. College of Software,Jilin University,Changchun 130012, China
  • Received:2018-04-19 Online:2019-07-01 Published:2019-07-16
  • Contact: Xiao-li ZHANG E-mail:lxf@jlu.edu.cn;zhangxiaoli@jlu.edu.cn

Abstract:

A remote sensing image fusion method based on cooperative empirical wavelet transform to fuse multi-source remote sensing image is proposed. Firstly, the algorithm performed principal component analysis on multi-source images to obtain a common image. Secondly, empirical wavelet transform was performed on intensity components of the common image to obtain filter banks. Then these filters were used to represent multi-spectral image intensity components and panchromatic images in multiscale. Finally, fusion image was obtained by inverse transformation. The algorithm adopts the cooperative adaptive decomposition method, which is beneficial to separate high frequency and low frequency information of the source image, and effectively improve the clarity of the remote sensing fusion image. QuickBird satellite data verifies the effectiveness of the algorithm. Visual perception and objective evaluation criteria indicate that has better advantages than other similar algorithms.

Key words: computer application, remote sensing image fusion, empirical wavelet transform, cooperativity

CLC Number: 

  • TP391

Fig.1

Comparison of grayscale"

Fig.2

Algorithm framework"

Fig.3

Fusion coefficient function"

Fig.4

1st group of test images and fusion results"

Fig.5

Comparison on details of fused images in Fig.4"

Fig.6

2nd group of test images and fusion results"

Table 1

Objective evaluation results of 1st group of fusion images"

算法 RMSE RASE SAM ERGAS PSNR SSIM Q ave
IHS 22.2254 52.4682 7.7981 12.5158 22.2606 0.8439 0.8978
DWT 19.3628 34.0643 6.1571 8.2142 23.4985 0.9244 0.9198
OHPF 20.2651 30.0090 2.8715 6.2870 22.3866 0.9534 0.9314
WT?SR 19.8009 37.7679 5.0812 8.6022 22.5431 0.9105 0.9249
NSCT 24.6146 38.4467 2.2639 12.1893 20.4806 0.8883 0.8658
EWT 18.1246 23.7163 1.8828 5.8821 23.7040 0.9641 0.9319

Table 2

Objective evaluation results of 2nd group of fusion images"

算法 RMSE RASE SAM ERGAS PSNR SSIM Q ave
IHS 30.3716 31.0853 1.9018 6.9990 20.2120 0.7297 0.8309
DWT 27.8557 18.1092 3.1537 4.7583 19.4589 0.9036 0.8993
OHPF 33.2604 22.4226 1.5624 4.6868 17.8567 0.9488 0.8917
WT?SR 28.1213 24.8624 3.7982 5.7716 19.6352 0.8319 0.8760
NSCT 24.6633 20.3793 3.1211 4.7806 20.5977 0.8832 0.9065
EWT 24.6866 12.5920 0.9886 3.1115 21.1044 0.9528 0.8991

Fig.7

3rd group of test images and fusion results"

Fig.8

4th group of test images and fusion results"

Fig.9

5th group of test images and fusion results"

Table 3

Objective evaluation results of 3rd group of fusion image"

算法 RMSE RASE SAM ERGAS PSNR SSIM Q ave
IHS 31.5504 29.9152 2.1829 6.6315 18.5856 0.7969 0.8538
DWT 26.8600 15.8039 1.5048 3.9499 20.1744 0.9214 0.8906
OHPF 25.8266 17.7111 1.1558 3.9022 20.1410 0.9547 0.9152
WT?SR 26.5366 22.5844 3.4426 5.1998 19.9179 0.8693 0.8960
NSCT 33.9741 20.7034 1.1517 5.9854 17.9541 0.9020 0.8913
EWT 23.7549 13.4538 1.1795 3.2849 21.3614 0.9463 0.9154

Table 4

Objective evaluation results of 4th group of fusion image"

算法 RMSE RASE SAM ERGAS PSNR SSIM Q ave
IHS 30.7291 29.0417 1.8867 7.2592 18.6423 0.7521 0.8056
DWT 22.3085 20.2051 4.0538 4.6172 21.3678 0.9031 0.9117
OHPF 29.5906 25.4255 2.2483 5.1827 18.7700 0.9425 0.9171
WT?SR 28.2686 27.5227 4.4231 6.2810 19.6222 0.8204 0.8532
NSCT 29.4142 23.3226 1.2483 6.6047 18.9528 0.8693 0.8788
EWT 22.2360 16.6535 1.3655 4.0650 21.5812 0.9246 0.9085

Table 5

Objective evaluation results of 5th group of fusion image"

算法 RMSE RASE SAM ERGAS PSNR SSIM Q ave
IHS 25.7279 37.9812 2.3086 10.2538 20.5340 0.8483 0.8751
DWT 23.9356 33.4104 3.0016 8.1045 20.8430 0.8906 0.9043
OHPF 23.4535 25.9037 1.3578 5.5809 21.1087 0.9524 0.9251
WT?SR 21.0221 26.1958 2.3558 6.6291 22.0092 0.9328 0.9243
NSCT 19.9575 26.6552 3.0279 6.9528 22.3768 0.9266 0.9296
EWT 20.0664 23.9614 1.1480 6.0644 22.4562 0.9443 0.9302
1 Ghassemian H . A review of remote sensing image fusion methods[J]. Information Fusion, 2016, 32(PA):75-89.
2 Yang Y , Wan W , Huang S , et al . Remote sensing image fusion based on adaptive IHS and multiscale guided filter[J]. IEEE Access, 2017, 4:4573-4582.
3 Leung Y , Liu J , Zhang J . An Improved Adaptive Intensity–Hue–Saturation Method for the Fusion of Remote Sensing Images[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 11(5):985-989.
4 Zhang Y , Hong G . An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images[J]. Information Fusion, 2005, 6(3):225-234.
5 Shah V P , Younan N H , King R L . An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets[J]. IEEE Transactions on Geoscience & Remote Sensing, 2008, 46(5):1323-1335.
6 陶旭婷, 和红杰, 陈帆,等 . 基于局部相关性的遥感图像全色锐化算法[J]. 光子学报, 2014, 43(3):310003.
Tao Xu-ting , He Hong-jie , Chen Fan , et al . Panchromatic sharpening algorithm based on local correlation for remote sensing images[J]. Acta Photonica Sinica, 2014, 43(3): 310003.
7 Pajares G , Cruz J M D L . A wavelet-based image fusion tutorial[J]. Pattern Recognition, 2004, 37(9):1855-1872.
8 包磊, 徐其志 . 基于PCA变换和光谱补偿的遥感影像融合方法[J]. 吉林大学学报:工学版, 2013,33(增刊1):88-91.
Bao Lei , Xu Qi-zhi . Spectrum-keeping algorithm for fusing based on PCA[J]. Journal of Jilin University(Engineering and Technology Edition), 2013,33(Supl.1):88-91.
9 李光鑫, 王珂 . 基于Contourlet变换的彩色图像融合算法[J]. 电子学报, 2007, 35(1):112-117.
Li Guang-xin , Wang Ke . Color image fusion algorithm Based on contourlet transform[J]. Chinese Journal of Electronics, 2007, 35(1):112-117.
10 Kong W W , Lei Y J , Lei Y , et al . Image fusion technique based on non-subsampled contourlet transform and adaptive unit-fast-linking pulse-coupled neural network[J]. Iet Image Processing, 2011, 5(2):113-121.
11 Fu L , Liao Y , Xin L . Image fusion based on nonsubsampled contourlet transform and pulse coupled neural networks[C]⫽Fourth International Conference on Intelligent Computation Technology and Automation, IEEE Computer Society, 2011:572-575.
12 Ghahremani M , Ghassemian H . Remote-sensing image fusion based on curvelets and ICA[J]. International Journal of Remote Sensing, 2015, 36(16):4131-4143.
13 Biswas B , Dey A , Dey K N . Remote sensing image fusion using statistical univariate finite mixture model in shearlet domain[C]⫽International Conference on Advances in Computing, Communications and Informatics. IEEE, 2015:2186-2191.
14 Biswas B , Dey K N , Chakrabarti A . Remote sensing image fusion using multithreshold Otsu method in shearlet domain[J]. Procedia Computer Science, 2015, 57:554-562.
15 Liu Y , Wang Z . A practical pan-sharpening method with wavelet transform and sparse representation[C]⫽IEEE International Conference on Imaging Systems and Techniques, IEEE, 2014:288-293.
16 Cheng J , Liu H , Liu T , et al . Remote sensing image fusion via wavelet transform and sparse representation[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2015, 104:158-173.
17 Metwalli M R , Nasr A H , Allah O S F , et al . Image fusion based on principal component analysis and high-pass filter[C]⫽International Conference on Computer Engineering & Systems,IEEE, 2010: 63-70.
18 Gangkofner U G , Pradhan P S , Holcomb D W . Optimizing the high-Pass filter addition technique for Image fusion[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(74):1107-1118.
19 Li W , Hu X , Du J , et al . Adaptive remote-sensing image fusion based on dynamic gradient sparse and average gradient difference[J]. International Journal of Remote Sensing, 2017, 38(23):7316-7332.
20 Wang Q , Meng Z , Li X . Locality adaptive discriminant analysis for spectral–spatial classification of hyperspectral images[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 14(11):2077-2081.
21 Gilles J . Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16):3999-4010.
22 陈善学,唐义嫄 .基于混沌系统的RGB彩色图像三重置乱算法[J].重庆邮电大学学报:自然科学版,2018,30(6):812-818.
Chen Shan-xue , Tang Yi-yuan . Triple scrambling algorithm for RGB color image based on chaotic system[J]. Chongqing University of Posts and Telecommunications(Natural Science Edition), 2018,30(6):812-818.
23 Gilles J , Tran G , Osher S . 2D empirical transforms. wavelets, ridgelets and curvelets revisited[J]. Siam Journal on Imaging Sciences, 2014, 7(7): 157-186.
24 刘磊, 张红, 王莎 . 基于小波变换的全局能量图像融合算法[J]. 吉林大学学报:工学版, 2009,39(增刊1):232-236.
Liu Lei , Zhang Hong , Wang Sha . Global energy image fusion algorithm based on wavelet transform[J]. Journal of Jilin University(Engineering and Technology Edition), 2009,39(Supl.1):232-236.
[1] Nan WANG,Jin⁃bao LI,Yong LIU,Yu⁃jie ZHANG,Ying⁃li ZHONG. TPR⁃TF: time⁃aware point of interest recommendation model based on tensor factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 920-933.
[2] LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850.
[3] WANG Li-min,LIU Yang,SUN Ming-hui,LI Mei-hui. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
[4] JIN Shun-fu,WANG Bao-shuai,HAO Shan-shan,JIA Xiao-guang,HUO Zhan-qiang. Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1859-1866.
[5] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[6] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[7] OUYANG Dan-tong, FAN Qi. Clause-level context-aware open information extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1563-1570.
[8] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[9] GUI Chun, HUANG Wang-xing. Network clustering method based on improved label propagation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1600-1605.
[10] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[11] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[12] ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] FU Wen-bo, ZHANG Jie, CHEN Yong-le. Network topology discovery algorithm against routing spoofing attack in Internet of things [J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] CAO Jie, SU Zhe, LI Xiao-xu. Image annotation method based on Corr-LDA model [J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!