J4

• 数学 • 上一篇    下一篇

集值Pramart的Riesz逼近

李高明1, 赵 辉2   

  1. 1. 武警工程学院 数学教研室, 西安 710086; 2. 陕西师范大学 民族教育研究中心, 西安 710062
  • 收稿日期:2008-04-14 修回日期:1900-01-01 出版日期:2009-01-26 发布日期:2009-01-26
  • 通讯作者: 李高明

Riesz Approximation of Setvalued Pramart

LI Gaoming1, ZHAO Hui2   

  1. 1. Department of Mathematics, Engineering College of Armed Police Force, Xi’an 710086, China;2. Education Research Center of Minority Nationality, Shaanxi Normal University, Xi’an 710062, China
  • Received:2008-04-14 Revised:1900-01-01 Online:2009-01-26 Published:2009-01-26
  • Contact: LI Gaoming

摘要: 设(X,‖·‖)为可分的Banach空间, X*为其对偶空间, X*可分, (Ω,B,P)为完备的概率空间, {Bn,n≥1}为B的上升子σ域族, 且B=∨Bn. 在X*可分的条件下给出了集值Pramart的鞅逼近, 并在此基础上证明了集值Subpramart在弱收敛意义下的收敛定理及Pramart在KuratowskiMosco收敛意义下的收敛定理.

关键词: 集值Subpramart, 集值Pramart, 弱收敛, KuratowskiMosco收敛

Abstract: On the basis of letting (X,‖·‖) will be a real separable Banach space with the dual X*, (Ω,B,P)be a complete probability space, further, {Bn,n≥1}be a increase sub σfields filtration of B, and B=∨Bn, the properties of set valued Pramart are discussed, including its in means weak and KuratowskiMosco convergence theorem.

Key words: setvalued Subpramart, setvalued Pramart, weak convergence, KuratowskiMosco convergence

中图分类号: 

  • O211.6