J4 ›› 2011, Vol. 49 ›› Issue (06): 1061-1063.

• 数学 • 上一篇    下一篇

三元多项式环中超越次数为2的收缩

金永   

  1. 吉林大学 数学学院, 长春 130012
  • 收稿日期:2011-10-11 出版日期:2011-11-26 发布日期:2011-11-28
  • 通讯作者: 金永 E-mail:kingmeng@126.com

Retracts with |Transcendental Degree 2 of the Polynomial Ring in Three Variables

JIN Yong   

  1. College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2011-10-11 Online:2011-11-26 Published:2011-11-28
  • Contact: JIN Yong E-mail:kingmeng@126.com

摘要:

设R为k[x,y,z]的收缩且其对应收缩同态为φ. 证明了如果R的超越次数为2, 且满足下列条件之一 , 则存在p,q∈R, 使得R=k[p,q]:   1) R为inert子代数, 不含坐标, 并且φ为某多项式的梯度; 2) R为2赋值代数.

关键词: 收缩, 2-赋值代数, inert子代数

Abstract:

Let R be a retract of k[x,y,z] with a retraction φ. It is proved that there exist p,q∈R such that R=k[p,q] if
 the transcendental degree of R over k is 2 and either of the following  conditions holds: 1) R is an inert subalgebra containing no coordinates andφ is the gradient of a polynomial; 2) R is a 2valuation algebra.

Key words: retract, 2-valuation algebra, inert subalgebra

中图分类号: 

  • O153.3