吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

非凸情况下发展包含的反周期问题

王俊彦1, 高顺川2,3, 王春红2   

  1. 1. 长春工业大学人文信息学院 数学教研部, 长春 130122; 2. 空军航空大学 基础部, 长春 130022;3. 吉林大学 数学研究所, 长春 130012
  • 收稿日期:2012-10-29 出版日期:2013-07-26 发布日期:2013-08-06
  • 通讯作者: 高顺川 E-mail:gaoshunchuan123@126.com

Anti-periodic Problems  of Evolution Inclusions in Nonconvex Case

WANG Jun yan1, GAO Shun chuan2,3, WANG Chun hong2   

  1. 1. Department of Mathematics,  Humanities and Information College of Changchun University of Technology,Changchun 130122, China; 2. Department of Foundation, Aviation University of Air Force, Changchun 130022, China;3. Institute of Mathematics, Jilin University, Changchun 130012, China
  • Received:2012-10-29 Online:2013-07-26 Published:2013-08-06
  • Contact: GAO Shun chuan E-mail:gaoshunchuan123@126.com

摘要:

讨论一类非凸情况下发展包含的反周期问题. 当集值函数G(t,x)取紧非凸值的, 关于变量t是可测的, 关于变量x是下半连续时, 运用连续选
择定理和Schauder不动点定理, 对方程作了先验估计, 并给出了反周期解的存在性定理.

关键词: 发展包含, 反周期, 不动点

Abstract:

The authors discussed the anti\|periodic problems of evolution inclusions in nonconvex case. When the mutilfuction G(t,x) takes bounded, weakly compact, nonconvex value, is measurable about variable t, and is a semi\|continuous about variable x, using techniques from the continuous selection theorem and the Schauder fixed point theory, we got a priori estimate to this equation and established the existence theorem of anti\|periodic solutions.

Key words: evolution inclusion, anti-periodic, fixed point

中图分类号: 

  • O175.14