胡雅婷1, 左春柽2, 曲福恒3
HU Yating1, ZUO Chuncheng2, QU Fuheng3
摘要:
针对可能性聚类对初始化参数设置依赖性较强的问题, 提出一种基于中心自动融合的可能性聚类算法, 并证明了算法中尺度因子的多尺度性质. 该算法通过建立中心的相关性判定准则, 根据数据自身分布特点动态调整聚类数目与结构, 通过引入尺度参数实现对数据的多分辨率分析. 与传统的模糊和可能性聚类算法相比, 该算法摆 脱了对聚类数目及初始化中心或隶属度矩阵设置的依赖性, 易于控制. 人造数据和真实数据实验结果表明, 该算法能自动确定数据中不同尺度下的聚类结构, 具有识别不同大小聚类结构的能力.
中图分类号: