吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

具Marta势能Hamilton系统的Liouville不可积性

冷诗扬1, 杨双羚2   

  1. 1. 吉林大学 数学学院, 长春 130012; 2. 吉林建筑大学城建学院 基础科学部, 长春 130114
  • 收稿日期:2017-11-17 出版日期:2018-05-26 发布日期:2018-05-18
  • 通讯作者: 冷诗扬 E-mail:18844545403@163.com

Liouville Nonintegrability of  Hamiltonian System with Marta Potential Energy

LENG Shiyang1, YANG Shuangling2   

  1. 1. College of Mathematics, Jilin University, Changchun 130012, China;2. Department of Foundation, The City College of Jilin Jianzhu University, Changchun 130114, China
  • Received:2017-11-17 Online:2018-05-26 Published:2018-05-18
  • Contact: LENG Shiyang E-mail:18844545403@163.com

摘要: 基于MoralesRamis理论, 用理论分析的方法考虑具有Marta势能的Hamilton系统的不可积性问题, 证明了该Hamilton系统在Liouville意义下是亚纯不可积的. 利用该结果可从不可积性的角度了解该系统的动力学行为及拓扑结构.

关键词: Liouville可积性, MoralesRamis理论, Marta势能

Abstract: Based on the MoralesRamis theory, we considered the nonintegrability of the Hamiltonian system with Marta potential energy by using the theoretical analysis method, and proved that this Hamiltonian system was not meromorphic integrable in sense of Liouville. The results can be used to understand the dynamic behavior and topological structure of the system from the perspective of nonintegrability.

Key words: MoralesRamis theory, Marta potential energy; Liouville integrability

中图分类号: 

  • O175.12