吉林大学学报(理学版) ›› 2018, Vol. 56 ›› Issue (6): 1349-1353.

• 数学 • 上一篇    下一篇

正合零因子下模的GC-同调维数

郭寿桃, 王占平   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2017-11-30 出版日期:2018-11-26 发布日期:2018-11-26
  • 通讯作者: 王占平 E-mail:wangzp@nwnu.edu.cn

G-C-Homological Dimensions of Modules under Exact ZeroDivisors

GUO Shoutao, WANG Zhanping   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

  • Received:2017-11-30 Online:2018-11-26 Published:2018-11-26

摘要: 设R是具有单位元的交换Noether环, C是半对偶化模, x是R上的正合零因子. 考虑正合零因子下模的GC-同调维数, 证明了若M是GC-投射(内射, 平坦)R-模, 则M/(xM)是GC/(xC)-投射(内射, 平坦)R/(xR)-模. 对DC-投射(内射)R-模可得类似结论.

关键词: 正合零因子, GC投射(内射, 平坦)模, GC投射(内射, 平坦)维数

Abstract: Let R be a commutative ring with identity, C be a semidualizing R-module and x be an exact zerodivisor over R. We considered the GC-homological dimensions of modules under exact zerodivisors, and proved that if M was GC-projective (injective, flat) R-module, then M/(xM) was GC/(xC)-projective (injective, flat) R/(xR)-module. And the similar conclusions could be obtained for DC-projective (injective) R-modules.

Key words: exact zerodivisor, GC-projective (injective, , flat) module, GC-projective (injective, flat) dimension

中图分类号: 

  • O153.3