吉林大学学报(理学版) ›› 2018, Vol. 56 ›› Issue (6): 1366-1372.

• 数学 • 上一篇    下一篇

分形集上的广义调和s-凸函数及Hadamard型不等式

孙文兵   

  1. 邵阳学院 理学院, 湖南 邵阳 422000
  • 收稿日期:2017-11-22 出版日期:2018-11-26 发布日期:2018-11-26
  • 通讯作者: 孙文兵 E-mail:swb0520@163.com

Generalized Harmonically s-Convex Functions andHadamard Type Inequalities on Fractal Sets#br#

SUN Wenbing   

  1. School of Science, Shaoyang University, Shaoyang 422000, Hunan Province, China
  • Received:2017-11-22 Online:2018-11-26 Published:2018-11-26

摘要: 在分形实线的分形集Rα(0<α≤1)上给出广义调和s凸函数的定义, 并建立关于广义调和s凸函数Hermite-Hadamard积分不等式以及关于局部分数阶积分的恒等式, 进而得到了关于该类函数的几个HermiteHadamard型局部分数阶积分不等式.

关键词: 广义调和s凸函数, HermiteHadamard型积分不等式,  , 分形集, 局部分数阶积分

Abstract: The author gave the definition of generalized harmonically s-convex function on fractal sets ?α(0<α≤1) of fractal real lines, established HermiteHadamard integral inequalities for generalized harmonically s-convex function and an identity for local fractional integral. Then some HermiteHadamard type local fractional integral inequalities for these classes of functions were obtained.

Key words: generalized harmonically s-convex function, HermiteHadamard type integral inequality, fractal set, local fractional integral

中图分类号: 

  • O178