吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (3): 463-469.

• 数学 • 上一篇    下一篇

一类非Newton微极流体方程组强解的存在唯一性 

史伟伟, 王长佳, 高艳超   

  1. 长春理工大学 理学院, 长春 130022
  • 收稿日期:2019-08-09 出版日期:2020-05-26 发布日期:2020-05-20
  • 通讯作者: 王长佳 E-mail:wangchangjia@gmail.com

Existence and Uniqueness of Strong Solutions for a Class ofNonNewtonian Micropolar Fluid Equations

SHI Weiwei, WANG Changjia, GAO Yanchao   

  1. School of Science, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2019-08-09 Online:2020-05-26 Published:2020-05-20
  • Contact: WANG Changjia E-mail:wangchangjia@gmail.com

摘要: 在二维或三维光滑有界区域Ω中, 考虑一类稳态非Newton微极流体方程组的第一边值问题. 在涡旋黏性系数及外力项某一范数适当小的条件下, 用不动点定理证明当指数p>1时方程组强解的存在唯一性.

关键词: 非Newton流, 微极流体, 强解, 存在唯一性 

Abstract: We considered the first boundary value problems for a class of steady NonNewtonian micropolar fluid equations in a smooth bounded domain Ω∈Rn (n=2,3). Under the conditions that the vortex viscosity coefficient and a certain norm of the external force term were appropriately small, we proved the existence and uniqueness of strong solutions of the system of equations by using the fixed point theorem with index p>1.

Key words: non-Newtonian fluid, micropolar fluid, strong solution, existence and uniqueness

中图分类号: 

  • O175.2