吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (3): 498-506.

• 数学 • 上一篇    下一篇

矩阵方程A+X=AX广义三次矩阵解与绝对值方程的解#br#

吕洪斌1, 杨忠鹏2, 陈梅香2, 王信存3   

  1. 1. 北华大学 数学与统计学院, 吉林 吉林 132013; 2. 莆田学院 数学与金融学院, 福建 莆田 351100;3. 辽东学院 师范学院, 辽宁 丹东 118003
  • 收稿日期:2019-12-02 出版日期:2020-05-26 发布日期:2020-05-20
  • 通讯作者: 杨忠鹏 E-mail:yangzhongpeng@126.com

Generalized Cubic Matrix Solutions to Matrix Equation A+X=AX and Solutions to Absolute Value Equation#br#

LV Hongbin1, YANG Zhongpeng2, CHEN Meixiang2, WANG Xinchun3   

  1. 1. School of Mathematics and Statistics, Beihua University, Jilin 132013, Jilin Province, China;
    2. School of Mathematics and Finance, Putian University, Putian 351100, Fujian Province, China;
    3. Teachers College, Eastern Liaoning University, Dandong 118003, Liaoning Province, China
  • Received:2019-12-02 Online:2020-05-26 Published:2020-05-20
  • Contact: YANG Zhongpeng E-mail:yangzhongpeng@126.com

摘要: 应用广义三次矩阵的Jordan标准形, 给出AX=A+X有广义三次矩阵解的充要条件及解的形式, 并证明由AX=A+X的广
义三次矩阵解B所确定的绝对值方程Bx-|x|=b有解.

关键词: 广义三次矩阵, Jordan标准形, 矩阵方程, 绝对值方程,

Abstract: Using Jordan standard form of generalized cubic matrix, we gave the necessary and sufficient conditions that the generalized cubic matrix solutions to the matrix equation AX=A+X existed and the form of the soluti
ons, and proved that the solutions to the absolute value equation Bx-|x|=b determined by the generalized cubic matrix solution B to AX=A+X existed.

Key words:  , generalized cubic matrix, Jordan standard form, matrix equation, absolute value equation, solution

中图分类号: 

  • O151.21