吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (4): 841-846.

• 数学 • 上一篇    下一篇

热源参数识别问题的Bayes遗传算法

尹伟石, 刘晓奇, 徐轩   

  1. 长春理工大学 理学院, 长春 130022
  • 收稿日期:2019-11-18 出版日期:2020-07-26 发布日期:2020-07-16
  • 通讯作者: 尹伟石 E-mail:yinweishi@foxmail.com

Bayesian Genetic Algorithm for Heat Source Parameter Identification Problem

YIN Weishi, LIU Xiaoqi, XU Xuan   

  1. School of Science, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2019-11-18 Online:2020-07-26 Published:2020-07-16
  • Contact: YIN Weishi E-mail:yinweishi@foxmail.com

摘要: 利用Bayes遗传算法求解二维热传导方程的热源参数. 首先通过Bayes推理和二维热传导方程得到热源参数的后验概率密度函数, 然后结合遗传算法, 根据最大似然原理给出热源位置参数及热源产生时间参数的后验概率分布和统计结果. 数值算例表明: 当迭代次数达到50次时, 参数的相对误差均稳定地收敛在1%以下; 对观测数据分别添加5%和10%的噪声, 参数的相对误差分别控制在5%和9%以下.

关键词: 反问题, Bayes推理, 热源识别, 遗传算法

Abstract: Bayesian genetic algorithm was used to solve the heat source parameters of twodimensional heat conduction equation. Firstly, the posterior probability density function of the heat source parameters was obtained by Bayesian inference and twodimensional heat conduction equation. Secondly, combined with the genetic algorithm, according to maximum likelihood principle, we gave the posterior probability distribution and statistical results of the location and the time parameters of the heat source. Numerical experiments show that when the iteration number reaches 50 times, the relative error of the parameters converge stably within 1%. Adding 5% and 10% noise to the observation data respectively, and the relative error of the parameters is controlled within 5% and 9% respectively.

Key words: inverse problem, Bayesian inference, heat source identification, genetic algorithm

中图分类号: 

  • O242.2