吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (5): 1173-1180.

• • 上一篇    下一篇

基于概念格的稀疏数据协同过滤校正自然噪声方法

朵琳, 杨丙   

  1. 昆明理工大学 信息工程与自动化学院, 昆明 650504
  • 收稿日期:2019-12-03 出版日期:2020-09-26 发布日期:2020-11-18
  • 通讯作者: 朵琳 E-mail:duolin2003@126.com

Collaborative Filtering Correction of Natural Noise Method of Sparse Data Based on Concept Lattice

DUO Lin, YANG Bing   

  1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
  • Received:2019-12-03 Online:2020-09-26 Published:2020-11-18

摘要: 针对推荐系统中存在的自然噪声问题, 提出一种基于概念格的稀疏数据协同过滤校正自然噪声的方法. 首先将用户和项目划分为强、 平均和弱三类检测自然噪声, 然后采用基于概念格的稀疏数据协同过滤校正这些自然噪声, 最后从获得的无自然噪声数据集中预测未评级的项目. 在含自然噪声的数据集上进行实验的结果表明, 该方法具有较高的推荐精度, 且在数据稀疏的情形下仍具有良好的性能.

关键词: 概念格, 稀疏数据, 自然噪声, 协同过滤, 推荐系统

Abstract: Aiming at the problem of natural noise in the recommended system, we proposed a collaborative filtering correction of natural noise method of sparse data based on concept lattice. Firstly, users and items were divided into three classes: strong, average and weak to detect natural noise. Secondly, the collaborative filtering of sparse data based on concept lattice was used to correct these natural noises. Finally, the unrated items were predicted from the obtained dataset without natural noise. The experimental results on the dataset containing natural noise show that the proposed method has high recommendation accuracy and good performance in the case of sparse data.

Key words: concept lattice, sparse data, natural noise, collaborative filtering, recommendation system

中图分类号: 

  • TP391.3