吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (5): 1195-1201.
袁倩影, 全海燕
YUAN Qianying, QUAN Haiyan
摘要: 为提高人工智能辅助诊断心音识别的准确率, 根据心音信号的周期性特点, 提出以快速主成分分析算法对心音信号降维和提取特征, 同时基于单形进化算法, 优化BP神经网络学习算法的输出与期望的误差函数, 以改进BP神经网络的学习性能, 实现对心音信号高准确度的分类识别. 针对正常心音及8类异常心音信号进行性能分析与测试, 实验结果表明, 各类心音的平均识别率为95.96%, 改进算法比其他对比算法识别率分别提高了4.9%,3.9%,1.9%, 表明该算法能更有效地分类识别心音信号, 提高人工辅助诊断的识别率.
中图分类号: