吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (6): 1327-1333.

• • 上一篇    下一篇

高阶卷积型积分微分方程的重心有理插值配点法

王宗奇, 韩惠丽, 张红   

  1. 宁夏大学 数学统计学院, 银川 750021
  • 出版日期:2020-11-18 发布日期:2020-11-26
  • 通讯作者: 韩惠丽 nxhan@126.com

Barycentric Rational Interpolation Collocation Method for Higher Order Convolution Integro-Differential Equation

WANG Zongqi, HAN Huili,  ZHANG Hong   

  1. School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
  • Online:2020-11-18 Published:2020-11-26

摘要: 针对高阶卷积型积分微分方程的数值求解问题, 首先利用重心有理插值配点法构造高阶卷积型积分微分方程的离散数值格式, 给出全局收敛性定理; 其次, 通过选取等距节点及相应的配置参数, 利用数值算例验证该方法的有效性.

关键词: 高阶卷积型积分微分方程, 重心有理插值, 配点法

Abstract: Aiming at the problem of the numerical solution of higher order convolution integro-differential equation. Firstly, the discrete numerical scheme of higher order convolution integro-differential equation was constructed by using barycentric rational interpolation collocation method, and the global convergence theorem was given. Secondly, by selecting equidistant nodes and corresponding configuration parameters, the effectiveness of the method was verified by numerical examples.

Key words: higher order convolution integro-differential equation, barycentric rational interpolation, collocation method

中图分类号: 

  • O175.5